SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Purcell Shaun) ;pers:(Purcell Shaun M)"

Sökning: WFRF:(Purcell Shaun) > Purcell Shaun M

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Charney, Alexander W, et al. (författare)
  • Contribution of Rare Copy Number Variants to Bipolar Disorder Risk Is Limited to Schizoaffective Cases.
  • 2019
  • Ingår i: Biological psychiatry. - : Elsevier BV. - 1873-2402 .- 0006-3223. ; 86:2, s. 110-119
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic risk for bipolar disorder (BD) is conferred through many common alleles, while a role for rare copy number variants (CNVs) is less clear. Subtypes of BD including schizoaffective disorder bipolar type (SAB), bipolar I disorder (BD I), and bipolar II disorder (BD II) differ according to the prominence and timing of psychosis, mania, and depression. The genetic factors contributing to the combination of symptoms among these subtypes are poorly understood.Rare large CNVs were analyzed in 6353 BD cases (3833 BD I [2676 with psychosis, 850 without psychosis, and 307 with unknown psychosis history], 1436 BD II, 579 SAB, and 505 BD not otherwise specified) and 8656 controls. CNV burden and a polygenic risk score (PRS) for schizophrenia were used to evaluate the relative contributions of rare and common variants to risk of BD, BD subtypes, and psychosis.CNV burden did not differ between BD and controls when treated as a single diagnostic entity. However, burden in SAB was increased relative to controls (p = .001), BD I (p = .0003), and BD II (p = .0007). Burden and schizophrenia PRSs were increased in SAB compared with BD I with psychosis (CNV p = .0007, PRS p = .004), and BD I without psychosis (CNV p = .0004, PRS p = 3.9 × 10-5). Within BD I, psychosis was associated with increased schizophrenia PRSs (p = .005) but not CNV burden.CNV burden in BD is limited to SAB. Rare and common genetic variants may contribute differently to risk for psychosis and perhaps other classes of psychiatric symptoms.
  •  
2.
  • Genovese, Giulio, et al. (författare)
  • Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence.
  • 2014
  • Ingår i: The New England journal of medicine. - 1533-4406 .- 0028-4793. ; 371:26, s. 2477-87
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancers arise from multiple acquired mutations, which presumably occur over many years. Early stages in cancer development might be present years before cancers become clinically apparent.
  •  
3.
  • Goes, Fernando S, et al. (författare)
  • Exome Sequencing of Familial Bipolar Disorder.
  • 2016
  • Ingår i: JAMA psychiatry. - : American Medical Association (AMA). - 2168-6238 .- 2168-622X. ; 73:6, s. 590-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Complex disorders, such as bipolar disorder (BD), likely result from the influence of both common and rare susceptibility alleles. While common variation has been widely studied, rare variant discovery has only recently become feasible with next-generation sequencing.
  •  
4.
  • Goodman, Matthew O., et al. (författare)
  • Causal Association Between Subtypes of Excessive Daytime Sleepiness and Risk of Cardiovascular Diseases
  • 2023
  • Ingår i: Journal of the American Heart Association. - 2047-9980. ; 12:24
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Excessive daytime sleepiness (EDS), experienced in 10% to 20% of the population, has been associated with cardiovascular disease and death. However, the condition is heterogeneous and is prevalent in individuals having short and long sleep duration. We sought to clarify the relationship between sleep duration subtypes of EDS with cardiovascular outcomes, accounting for these subtypes. METHODS AND RESULTS: We defined 3 sleep duration subtypes of excessive daytime sleepiness: normal (6-9 hours), short (<6 hours), and long (>9 hours), and compared these with a nonsleepy, normal-sleep-duration reference group. We analyzed their associations with incident myocardial infarction (MI) and stroke using medical records of 355 901 UK Biobank participants and performed 2-sample Mendelian randomization for each outcome. Compared with healthy sleep, long-sleep EDS was associated with an 83% increased rate of MI (hazard ratio, 1.83 [95% CI, 1.21-2.77]) during 8.2-year median follow-up, adjusting for multiple health and sociodemographic factors. Mendelian randomization analysis provided supporting evidence of a causal role for a genetic long-sleep EDS subtype in MI (inverse-variance weighted β=1.995, P=0.001). In contrast, we did not find evidence that other subtypes of EDS were associated with incident MI or any associations with stroke (P>0.05). CONCLUSIONS: Our study suggests the previous evidence linking EDS with increased cardiovascular disease risk may be primarily driven by the effect of its long-sleep subtype on higher risk of MI. Underlying mechanisms remain to be investigated but may involve sleep irregularity and circadian disruption, suggesting a need for novel interventions in this population.
  •  
5.
  • Humphreys, Keith, et al. (författare)
  • The Genetic Structure of the Swedish Population
  • 2011
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:8, s. e22547-
  • Tidskriftsartikel (refereegranskat)abstract
    • Patterns of genetic diversity have previously been shown to mirror geography on a global scale and within continents and individual countries. Using genome-wide SNP data on 5174 Swedes with extensive geographical coverage, we analyzed the genetic structure of the Swedish population. We observed strong differences between the far northern counties and the remaining counties. The population of Dalarna county, in north middle Sweden, which borders southern Norway, also appears to differ markedly from other counties, possibly due to this county having more individuals with remote Finnish or Norwegian ancestry than other counties. An analysis of genetic differentiation (based on pairwise F(st)) indicated that the population of Sweden's southernmost counties are genetically closer to the HapMap CEU samples of Northern European ancestry than to the populations of Sweden's northernmost counties. In a comparison of extended homozygous segments, we detected a clear divide between southern and northern Sweden with small differences between the southern counties and considerably more segments in northern Sweden. Both the increased degree of homozygosity in the north and the large genetic differences between the south and the north may have arisen due to a small population in the north and the vast geographical distances between towns and villages in the north, in contrast to the more densely settled southern parts of Sweden. Our findings have implications for future genome-wide association studies (GWAS) with respect to the matching of cases and controls and the need for within-county matching. We have shown that genetic differences within a single country may be substantial, even when viewed on a European scale. Thus, population stratification needs to be accounted for, even within a country like Sweden, which is often perceived to be relatively homogenous and a favourable resource for genetic mapping, otherwise inferences based on genetic data may lead to false conclusions.
  •  
6.
  • Neale, Benjamin M., et al. (författare)
  • Testing for an Unusual Distribution of Rare Variants
  • 2011
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 7:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Technological advances make it possible to use high-throughput sequencing as a primary discovery tool of medical genetics, specifically for assaying rare variation. Still this approach faces the analytic challenge that the influence of very rare variants can only be evaluated effectively as a group. A further complication is that any given rare variant could have no effect, could increase risk, or could be protective. We propose here the C-alpha test statistic as a novel approach for testing for the presence of this mixture of effects across a set of rare variants. Unlike existing burden tests, C-alpha, by testing the variance rather than the mean, maintains consistent power when the target set contains both risk and protective variants. Through simulations and analysis of case/control data, we demonstrate good power relative to existing methods that assess the burden of rare variants in individuals.
  •  
7.
  • Purcell, Shaun M., et al. (författare)
  • Common polygenic variation contributes to risk of schizophrenia and bipolar disorder
  • 2009
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 460:7256, s. 748-752
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia is a severe mental disorder with a lifetime risk of about 1%, characterized by hallucinations, delusions and cognitive deficits, with heritability estimated at up to 80%(1,2). We performed a genome-wide association study of 3,322 European individuals with schizophrenia and 3,587 controls. Here we show, using two analytic approaches, the extent to which common genetic variation underlies the risk of schizophrenia. First, we implicate the major histocompatibility complex. Second, we provide molecular genetic evidence for a substantial polygenic component to the risk of schizophrenia involving thousands of common alleles of very small effect. We show that this component also contributes to the risk of bipolar disorder, but not to several non-psychiatric diseases.
  •  
8.
  • Ruderfer, Douglas M., et al. (författare)
  • Mosaic copy number variation in schizophrenia
  • 2013
  • Ingår i: European Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1018-4813 .- 1476-5438. ; 21:9, s. 1007-1011
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent reports suggest that somatic structural changes occur in the human genome, but how these genomic alterations might contribute to disease is unknown. Using samples collected as part of the International Schizophrenia Consortium (schizophrenia, n = 3518; control, n = 4238) recruited across multiple university research centers, we assessed single-nucleotide polymorphism genotyping arrays for evidence of chromosomal anomalies. Data from genotyping arrays on each individual were processed using Birdsuite and analyzed with PLINK. We validated potential chromosomal anomalies using custom nanostring probes and quantitative PCR. We estimate chromosomal alterations in the schizophrenia population to be 0.42%, which is not significantly different from controls (0.26%). We identified and validated a set of four extremely large (>10 Mb) chromosomal anomalies in subjects with schizophrenia, including a chromosome 8 trisomy and deletion of the q arm of chromosome 7. These data demonstrate that chromosomal anomalies are present at low frequency in blood cells of both control and schizophrenia subjects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy