SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Puschmann Andreas) ;srt2:(2015-2019);lar1:(ki)"

Search: WFRF:(Puschmann Andreas) > (2015-2019) > Karolinska Institutet

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Ran, C., et al. (author)
  • Strong association between glucocerebrosidase mutations and Parkinson's disease in Sweden
  • 2016
  • In: Neurobiology of Aging. - : Elsevier BV. - 0197-4580 .- 1558-1497. ; 45
  • Journal article (peer-reviewed)abstract
    • Several genetic studies have demonstrated an association between mutations in glucocerebrosidase (GBA), originally implicated in Gaucher's disease, and an increased risk of Parkinson's disease (PD). We have investigated the possible involvement of genetic GBA variations in PD in the Swedish population. Three GBA variants, E326K, N370S, and L444P were screened in the largest Swedish Parkinson cohort reported to date; 1625 cases and 2025 control individuals. We found a significant association with high effect size of the rare variant L444P with PD (odds ratio 8.17; 95% confidence interval: 2.51-26.23; p-value = 0.0020) and a significant association of the common variant E326K (odds ratio 1.60; 95% confidence interval: 1.16-2.22; p-value = 0.026). The rare variant N370S showed a trend for association. Most L444P carriers (68%) were found to reside in northern Sweden, which is consistent with a higher prevalence of Gaucher's disease in this part of the country. Our findings support the role of GBA mutations as risk factors for PD and point to lysosomal dysfunction as a mechanism contributing to PD etiology. (C) 2016 The Author(s). Published by Elsevier Inc.
  •  
3.
  • Tesi, Bianca, et al. (author)
  • Gain-of-function SAMD9L mutations cause a syndrome of cytopenia, immunodeficiency, MDS, and neurological symptoms
  • 2017
  • In: Blood. - : AMER SOC HEMATOLOGY. - 0006-4971 .- 1528-0020. ; 129:16, s. 2266-2279
  • Journal article (peer-reviewed)abstract
    • Several monogenic causes of familial myelodysplastic syndrome (MDS) have recently been identified. We studied 2 families with cytopenia, predisposition to MDS with chromosome 7 aberrations, immunodeficiency, and progressive cerebellar dysfunction. Genetic studies uncovered heterozygous missense mutations in SAMD9L, a tumor suppressor gene located on chromosome arm 7q. Consistent with a gain-of-function effect, ectopic expression of the 2 identified SAMD9L mutants decreased cell proliferation relative to wild-type protein. Of the 10 individuals identified who were heterozygous for either SAMD9L mutation, 3 developed MDS upon loss of the mutated SAMD9L allele following intracellular infections associated with myeloid, B-, and natural killer (NK)-cell deficiency. Five other individuals, 3 with spontaneously resolved cytopenic episodes in infancy, harbored hematopoietic revertant mosaicism by uniparental disomy of 7q, with loss of the mutated allele or additional in cis SAMD9L truncating mutations. Examination of 1 individual indicated that somatic reversions were postnatally selected. Somatic mutations were tracked to CD34 1 hematopoietic progenitor cell populations, being further enriched in B and NK cells. Stimulation of these cell types with interferon (IFN)-alpha or IFN-gamma induced SAMD9L expression. Clinically, revertant mosaicism was associated with milder disease, yet neurological manifestations persisted in 3 individuals. Two carriers also harbored a rare, in trans germ line SAMD9L missense loss-of-function variant, potentially counteracting the SAMD9L mutation. Our results demonstrate that gain-of-function mutations in the tumor suppressor SAMD9L cause cytopenia, immunodeficiency, variable neurological presentation, and predisposition to MDS with 27/del(7q), whereas hematopoietic revertant mosaicism commonly ameliorated clinical manifestations. The findings suggest a role for SAMD9L in regulating IFN-driven, demand-adapted hematopoiesis.
  •  
4.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view