SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Puschmann Andreas) ;srt2:(2015-2019);pers:(Hansson Oskar)"

Sökning: WFRF:(Puschmann Andreas) > (2015-2019) > Hansson Oskar

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Puschmann, Andreas, et al. (författare)
  • Heterozygous PINK1 p.G411S increases risk of Parkinson's disease via a dominant-negative mechanism
  • 2017
  • Ingår i: Brain. - : Oxford University Press (OUP). - 1460-2156 .- 0006-8950. ; 140:1, s. 98-117
  • Tidskriftsartikel (refereegranskat)abstract
    • SEE GANDHI AND PLUN-FAVREAU DOI101093/AWW320 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: It has been postulated that heterozygous mutations in recessive Parkinson's genes may increase the risk of developing the disease. In particular, the PTEN-induced putative kinase 1 (PINK1) p.G411S (c.1231G>A, rs45478900) mutation has been reported in families with dominant inheritance patterns of Parkinson's disease, suggesting that it might confer a sizeable disease risk when present on only one allele. We examined families with PINK1 p.G411S and conducted a genetic association study with 2560 patients with Parkinson's disease and 2145 control subjects. Heterozygous PINK1 p.G411S mutations markedly increased Parkinson's disease risk (odds ratio = 2.92, P = 0.032); significance remained when supplementing with results from previous studies on 4437 additional subjects (odds ratio = 2.89, P = 0.027). We analysed primary human skin fibroblasts and induced neurons from heterozygous PINK1 p.G411S carriers compared to PINK1 p.Q456X heterozygotes and PINK1 wild-type controls under endogenous conditions. While cells from PINK1 p.Q456X heterozygotes showed reduced levels of PINK1 protein and decreased initial kinase activity upon mitochondrial damage, stress-response was largely unaffected over time, as expected for a recessive loss-of-function mutation. By contrast, PINK1 p.G411S heterozygotes showed no decrease of PINK1 protein levels but a sustained, significant reduction in kinase activity. Molecular modelling and dynamics simulations as well as multiple functional assays revealed that the p.G411S mutation interferes with ubiquitin phosphorylation by wild-type PINK1 in a heterodimeric complex. This impairs the protective functions of the PINK1/parkin-mediated mitochondrial quality control. Based on genetic and clinical evaluation as well as functional and structural characterization, we established p.G411S as a rare genetic risk factor with a relatively large effect size conferred by a partial dominant-negative function phenotype.
  •  
2.
  •  
3.
  •  
4.
  • Smith, Ruben, et al. (författare)
  • 18F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers
  • 2016
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 139:9, s. 2372-2379
  • Tidskriftsartikel (refereegranskat)abstract
    • Tau positron emission tomography ligands provide the novel possibility to image tau pathologyin vivo. However, little is known about howin vivo brain uptake of tau positron emission tomography ligands relates to tau aggregates observed post-mortem. We performed tau positron emission tomography imaging with F-18-AV-1451 in three patients harbouring a p.R406W mutation in theMAPT gene, encoding tau. This mutation results in 3- and 4-repeat tau aggregates similar to those in Alzheimer's disease, and many of the mutation carriers initially suffer from memory impairment and temporal lobe atrophy. Two patients with short disease duration and isolated memory impairment exhibited F-18-AV-1451 uptake mainly in the hippocampus and adjacent temporal lobe regions, correlating with glucose hypometabolism in corresponding regions. One patient died after 26 years of disease duration with dementia and behavioural deficits. Pre-mortem, there was F-18-AV-1451 uptake in the temporal and frontal lobes, as well as in the basal ganglia, which strongly correlated with the regional extent and amount of tau pathology in post-mortem brain sections. Amyloid-beta (F-18-flutemetamol) positron emission tomography scans were negative in all cases, as were stainings of brain sections for amyloid. This provides strong evidence that F-18-AV-1451 positron emission tomography can be used to accurately quantifyin vivo the regional distribution of hyperphosphorylated tau protein.
  •  
5.
  • Smith, Ruben, et al. (författare)
  • 18F-AV1451 pet detects tau pathology in mapt mutation carriers and correlates strongly with immunohistochemistry of tau aggregates
  • 2016
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5279 .- 1552-5260. ; 12:7 Suppl, s. 723-724
  • Konferensbidrag (refereegranskat)abstract
    • Background: The Tau PET ligand 18F-AV1451 has been shown to reliably detect paired helical filaments of tau in Alzheimer's disease, but it is not yet known whether it binds to the tau aggregates present in patients with mutations in the gene (MAPT) coding for the tau protein. Further, no study has yet compared the cerebral retention of 18F -AV1451 with the tau aggregates revealed using neuropathology. Methods: Three patients from a Swedish family carrying the R406W mutation of MAPT were assessed with cognitive tests and subjects underwent 18F-AV1451 and 18F-Flutemetamol PET scans. Further one of younger subjects also underwent an 18F-FDG PET scan. The oldest subject died two weeks after the scan and the brain was processed for neuropathology. Tau immunohistochemistry was performed on brain sections from affected and unaffected brain regions. Results: Two mutation carriers, aged 56 and 60 years, had disease durations of 5-10 years and still only exhibited mild-moderate episodic memory impairment and no clear behavioural deficits. The MRI revealed only slight cortical atrophy and 18F-AV1451 PET imaging showed uptake in the hippocampus and the temporal lobes, especially in the inferior and anterior parts (Fig 1A, B). The uptake of 18F - AV1451 correlated well with hypometabolism revealed with FGD PET in one of the subjects. The third case, 76 years, had a disease duration of ≥20 years and exhibited clear cognitive impairment, behavioural disturbances, mutism and dysphagia. The CT scan showed generalised cortical atrophy with a pronounced temporal lobe atrophy and 18F -AV1451 PET imaging revealed uptake in the temporal and frontal lobes, as well as in the basal ganglia (Fig 1 C). The regional uptake of 18F -AV1451 correlated strongly with the tau aggregates revealed using immunohistochemistry (R2 = 0.80, P <0.01; Fig 2). All cases exhibited negative amyloid (18F -flutemetamol) PET scans. Conclusions: The in vivo uptake of 18F-AV1451 reflects the regional amount of tau aggregates revealed by neuropathological examination. Further, tau pathology in MAPT mutation carriers is accurately detected with 18F -AV1451 PET, which consequently can be used to track the effects of anti-tau therapies in this patient group. (Figure Presented) .
  •  
6.
  • Ygland, Emil, et al. (författare)
  • Slowly progressive dementia caused by MAPT R406W mutations : longitudinal report on a new kindred and systematic review
  • 2018
  • Ingår i: Alzheimer's Research & Therapy. - : BioMed Central. - 1758-9193. ; 10
  • Forskningsöversikt (refereegranskat)abstract
    • Background: The MAPT c.1216C > T (p.Arg406Trp; R406W) mutation is a known cause of frontotemporal dementia with Parkinsonism linked to chromosome 17 tau with Alzheimer's disease-like clinical features. Methods: We compiled clinical data from a new Swedish kindred with R406W mutation. Seven family members were followed longitudinally for up to 22 years. Radiological examinations were performed in six family members and neuropathological examinations in three. We systematically reviewed the literature and compiled clinical, radiological, and neuropathological data on 63 previously described R406W heterozygotes and 3 homozygotes. Results: For all cases combined, the median age of onset was 56 years and the median disease duration was 13 years. Memory impairment was the most frequent symptom, behavioral disturbance and language impairment were less common, and Parkinsonism was rare. Disease progression was most often slow. The most frequent clinical diagnosis was Alzheimer's disease. R406W homozygotes had an earlier age at onset and a higher frequency of behavioral symptoms and Parkinsonism than heterozygotes. In the new Swedish kindred, a consistent imaging finding was ventromedial temporal lobe atrophy, which was evident also in early disease stages as a widening of the collateral sulcus with ensuing atrophy of the parahippocampal gyrus. Unlike previously published R406W carriers, all three autopsied patients from the novel family showed neuropathological similarities with progressive supranuclear palsy, with predominant four-repeat (exon 10+) tau isoform (4R) tauopathy and neurofibrillary tangles accentuated in the basal-medial temporal lobe. Amyloid-beta pathology was absent. Conclusions: Dominance of 4R over three-repeat (exon 10-) tau isoforms contrasts with earlier reports of R406W patients and was not sufficiently explained by the presence of H1/H2 haplotypes in two of the autopsied patients. R406W patients often show a long course of disease with marked memory deficits. Both our neuropathological results and our imaging findings revealed that the ventromedial temporal lobes were extensively affected in the disease. We suggest that this area may represent the point of origin of tau deposition in this disease with relatively isolated tauopathy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy