SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Qu Flora) "

Sökning: WFRF:(Qu Flora)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schunkert, Heribert, et al. (författare)
  • Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease
  • 2011
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1546-1718. ; 43:4, s. 153-333
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed a meta-analysis of 14 genome-wide association studies of coronary artery disease (CAD) comprising 22,233 individuals with CAD (cases) and 64,762 controls of European descent followed by genotyping of top association signals in 56,682 additional individuals. This analysis identified 13 loci newly associated with CAD at P < 5 x 10(-8) and confirmed the association of 10 of 12 previously reported CAD loci. The 13 new loci showed risk allele frequencies ranging from 0.13 to 0.91 and were associated with a 6% to 17% increase in the risk of CAD per allele. Notably, only three of the new loci showed significant association with traditional CAD risk factors and the majority lie in gene regions not previously implicated in the pathogenesis of CAD. Finally, five of the new CAD risk loci appear to have pleiotropic effects, showing strong association with various other human diseases or traits.
  •  
2.
  • Thomas, Minta, et al. (författare)
  • Genome-wide Modeling of Polygenic Risk Score in Colorectal Cancer Risk
  • 2020
  • Ingår i: American Journal of Human Genetics. - Cambridge : Cell Press. - 0002-9297 .- 1537-6605. ; 107:3, s. 432-444
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate colorectal cancer (CRC) risk prediction models are critical for identifying individuals at low and high risk of developing CRC, as they can then be offered targeted screening and interventions to address their risks of developing disease (if they are in a high-risk group) and avoid unnecessary screening and interventions (if they are in a low-risk group). As it is likely that thousands of genetic variants contribute to CRC risk, it is clinically important to investigate whether these genetic variants can be used jointly for CRC risk prediction. In this paper, we derived and compared different approaches to generating predictive polygenic risk scores (PRS) from genome-wide association studies (GWASs) including 55,105 CRC-affected case subjects and 65,079 control subjects of European ancestry. We built the PRS in three ways, using (1) 140 previously identified and validated CRC loci; (2) SNP selection based on linkage disequilibrium (LD) clumping followed by machine-learning approaches; and (3) LDpred, a Bayesian approach for genome-wide risk prediction. We tested the PRS in an independent cohort of 101,987 individuals with 1,699 CRC-affected case subjects. The discriminatory accuracy, calculated by the age- and sex-adjusted area under the receiver operating characteristics curve (AUC), was highest for the LDpred-derived PRS (AUC = 0.654) including nearly 1.2 M genetic variants (the proportion of causal genetic variants for CRC assumed to be 0.003), whereas the PRS of the 140 known variants identified from GWASs had the lowest AUC (AUC = 0.629). Based on the LDpred-derived PRS, we are able to identify 30% of individuals without a family history as having risk for CRC similar to those with a family history of CRC, whereas the PRS based on known GWAS variants identified only top 10% as having a similar relative risk. About 90% of these individuals have no family history and would have been considered average risk under current screening guidelines, but might benefit from earlier screening. The developed PRS offers a way for risk-stratified CRC screening and other targeted interventions.
  •  
3.
  • Thomas, Minta, et al. (författare)
  • Response to Li and Hopper
  • 2021
  • Ingår i: American Journal of Human Genetics. - 0002-9297 .- 1537-6605. ; 108:3, s. 527-529
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  • Harrison, Tabitha A., et al. (författare)
  • Genome-wide association study by colorectal carcinoma subtype
  • 2018
  • Ingår i: Cancer Research. - : American Association for Cancer Research. - 0008-5472 .- 1538-7445. ; 78:13
  • Tidskriftsartikel (övrigt vetenskapligt)abstract
    • Over 50 genetic variants have been associated with colorectal cancer (CRC) risk through genome-wide association studies (GWAS), yet these variants represent only a fraction of the total estimated heritability. CRC is a heterogenous disease with diverse tumor etiology. Assessing genetic risk in molecular subtypes may help to identify novel loci and characterize genetic risk among tumor subtypes. We used microsatellite instability (MSI), an established CRC classifier with etiological and therapeutic relevance, to define CRC subtypes for GWAS analyses. We conducted a case-case analysis to estimate odds ratios (OR) and 95% confidence intervals (CI) for association of genome-wide variants with microsatellite stable (MSS) versus unstable (MSI) carcinomas. We ran an inverse-variance weighted fixed-effects meta-analysis across GWAS in a discovery set of 4,163 population-based CRC cases with harmonized microsatellite instability (MSI) marker and imputed genotype data. For each analysis, we used log-additive logistic regression, adjusting for age, sex, and principal components to account for population substructure. We then followed up with replication of 102 SNPs that reached p-values less than 5x10-6 in 1,698 cases. A total of 845 (20.3%) cancer cases were microsatellite unstable in the discovery population and 174 (10.2%) were unstable in the replication population. No variants reached the genome-wide significance level of 5x10-8 in the discovery set. However, we identified two variants that reached a Bonferroni corrected p-value of 4.0x10-4 in the replication set. This included one variant in MLH1 (Replication: OR=1.74, 95% CI=1.53-1.98, p=1.63x10-5; Discovery+Replication: OR=1.45, 95% CI=1.37-1.54, p=9.76x10-11) and one variant in LOC105377645 (Replication: OR=1.70, 95% CI=1.49-1.94, p=5.13x10-5; Discovery+Replication: OR=1.45, 95% CI=1.37-1.54, p=9.76 x 10-11). The MLH1 gene is a DNA mismatch repair gene implicated in Lynch Syndrome, the hallmark of which is microsatellite instability. This is the first genome-wide scan to identify a common variant in MLH1 that is associated with CRC. This variant (minor allele frequency, MAF = 23% in this all European ancestry population) is located in the 5'-untranslated region of MLH1 and is thought to act as a long-range regulator of DCLK3, a potential tumor driver gene. The second variant, located in LOC105377645 with an MAF of 22%, is in an uncharacterized region of the genome and has not previously been implicated in cancer development. These findings suggest that accounting for molecular heterogeneity is important for discovery and characterization of genetic variants associated with CRC risk. We plan to run polytomous regression analyses, increase our sample size, and further investigate CRC subtypes by CIMP, BRAF mutation, KRAS mutation status.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy