SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rönn Tina) ;pers:(Wollmer Per)"

Sökning: WFRF:(Rönn Tina) > Wollmer Per

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ekman, Carl, et al. (författare)
  • Less pronounced response to exercise in healthy relatives to type 2 diabetic subjects compared with controls
  • 2015
  • Ingår i: Journal of applied physiology. - : American Physiological Society. - 8750-7587 .- 1522-1601. ; 119:9, s. 953-960
  • Tidskriftsartikel (refereegranskat)abstract
    • Healthy first-degree relatives with heredity of type 2 diabetes (FH+) are known to have metabolic inflexibility compared with subjects without heredity for diabetes (FH-). In this study, we aimed to test the hypothesis that FH+ individuals have an impaired response to exercise compared with FH-. Sixteen FH+ and 19 FH- insulin-sensitive men similar in age, peak oxygen consumption ((V) over dot(O2 peak)), and body mass index completed an exercise intervention with heart rate monitored during exercise for 7 mo. Before and after the exercise intervention, the participants underwent a physical examination and tests for glucose tolerance and exercise capacity, and muscle biopsies were taken for expression analysis. The participants attended, on average, 39 training sessions during the intervention and spent 18.8 MJ on exercise. (V) over dot(O2 peak)/kg increased by 14%, and the participants lost 1.2 kg of weight and 3 cm waist circumference. Given that the FH- group expended 61% more energy during the intervention, we used regression analysis to analyze the response in the FH+ and FH- groups separately. Exercise volume had a significant effect on (V) over dot(O2 peak), weight, and waist circumference in the FH- group, but not in the FH+ group. After exercise, expression of genes involved in metabolism, oxidative phosphorylation, and cellular respiration increased more in the FH- compared with the FH+ group. This suggests that healthy, insulin-sensitive FH+ and FH- participants with similar age, (V) over dot(O2 peak), and body mass index may respond differently to an exercise intervention. The FH+ background might limit muscle adaptation to exercise, which may contribute to the increased susceptibility to type 2 diabetes in FH+ individuals.
  •  
2.
  • Elgzyri, Targ, et al. (författare)
  • First-degree relatives of type 2 diabetic patients have reduced expression of genes involved in fatty acid metabolism in skeletal muscle
  • 2012
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 0021-972X .- 1945-7197. ; 97:7, s. E1332-E1337
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: First-degree relatives of patients with type 2 diabetes (FH+) have been shown to have decreased energy expenditure and decreased expression of mitochondrial genes in skeletal muscle. In previous studies, it has been difficult to distinguish whether mitochondrial dysfunction and differential regulation of genes are primary (genetic) or due to reduced physical activity, obesity, or other correlated factors.Objective: The aim of this study was to investigate whether mitochondrial dysfunction is a primary defect or results from an altered metabolic state.Design: We compared gene expression in skeletal muscle from 24 male subjects with FH and 26 without FH matched for age, glucose tolerance, VO2peak (peak oxygen uptake), and body mass index using microarrays. Additionally, type fiber composition, mitochondrial DNA content, and citrate synthase activity were measured. The results were followed up in an additional cohort with measurements of in vivo metabolism. Results: FH+ vs. FH- subjects showed reduced expression of mitochondrial genes (P = 2.75 x 10(-6)), particularly genes involved in fatty acid metabolism (P = 4.08 x 10(-7)), despite similar mitochondrial DNA content. Strikingly, a 70% reduced expression of the monoamine oxidase A(MAOA) gene was found in FH+ vs. FH- individuals (P = 0.0009). Down-regulation of the genes involved in fat metabolism was associated with decreased in vivo fat oxidation and increased glucose oxidation examined in an additional cohort of elderly men.Conclusions: These results suggest that genetically altered fatty acid metabolism predisposes to type 2 diabetes and propose a role for catecholamine-metabolizing enzymes like MAOA in the regulation of energy metabolism. (J Clin Endocrinol Metab 97: E1332-E1337, 2012)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy