SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rachlew Elisabeth) ;conttype:(scientificother)"

Search: WFRF:(Rachlew Elisabeth) > Other academic/artistic

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Álvarez Ruiz, Jesús, 1975- (author)
  • Synchrotron radiation induced fluorescence spectroscopy of gas phase molecules
  • 2004
  • Doctoral thesis (other academic/artistic)abstract
    • A new experimental set-up for gas phase fluorescence studies using synchrotron radiation has been designed and constructed to perform simultaneously total and dispersed fluorescence measurements. Neutral photodissociation of CO has been investigated after excitation with 19-26 eV photons. Fluorescence from 3p 3P, 3p 3S and 3p 1D excited states in carbon was recorded and interpreted by ab initio calculations. The population and dissociation of states belonging to the C and D Rydberg series in CO seem to explain the production of the observed triplet states but not the 3p 1D state. Neutral photodissociation of NO is reported in the 17-26 eV energy range. No known molecular states can account for the collected data. New information regarding the precursor states of the observed neutral dissociation is provided by ab initio calculations. Autoionization of superexcited states in molecular nitrogen is evidenced by strong deviations of the Franck-Condon ratio in the fluorescence of the N2+ B state. Ab initio calculations predict the existence of autoionizing-excited states that may account for some of the observed structures in the 20-46 eV energy range. Selective molecular fluorescence from the npó1Óu+ and npð 1Ðu (n=3-7) Rydberg levels to the E,F 1Óg+ state in H2 was recorded and rotationally analyzed. Vibrational levels of the E,F 1Óg+ state (vEF =0,1,3,6-10) are determined. The predissociation of npð 1Ð+ levels is observed in agreement with the literature. Fragmentation of SF6 was investigated after excitation with 25–80 eV photons. Dispersed fluorescence measurements reveal the emission of S, S+, F and F+ excited atoms. These fragments are produced after single, double and triple excitations as well as direct ionizations and shake-ups in SF6. Photoabsorption and fluorescence yield have been measured in SF5CF3 using 10-30eV photons. The photoabsorption spectrum can be explained in terms of its similarities to those of the SF6 and CF4 molecules. The dispersed and un-dispersed fluorescence resemble those of the CF3X family. Several features suggest the migration of an F atom across the S-C bond that fragments the molecule producing excited CF4. Doubly excited states of H2 have been investigated in the range of 26-60 eV by monitoring Balmer á emission. The experimental data show the already known emission correlated with the fragmentation of the Q1 and Q2 states, and new features which could be attributed to dissociative photoionization and higher lying doubly excited states Qn (n>2) of the hydrogen molecule
  •  
2.
  • Jakubowska, Katarzyna (author)
  • Development of visible spectroscopic techniques for applications in plasma diagnostics
  • 2006
  • Licentiate thesis (other academic/artistic)abstract
    • In this thesis visible spectroscopy is developed and used for two applications. Studies of motional Stark effect spectra for diagnosing the current distribution in the fusion plasmas with two different spectroscopic diagnostic systems: ratiometry and interferometry. Both systems provide non-invasive method for diagnosis of the internal plasma properties, e.g. magnetic field. Pitch angle of magnetic field lines are obtained from polarisation of Stark split Hα spectral lines emitted by energetic hydrogen atoms injected into the plasma volume by neutral beam. Several methods of calibration of the systems on TEXTOR and JET are discussed. The main result of this work is the first measurement of the safety factor radial profile with new ratiometric MSE system on TEXTOR. Studies of molecular fragmentation of free molecules CH4 and NH3 excited with synchrotron radiation by detection of the fluorescence from the fragments. The results give the decay path ways for the molecules when excited below the N and C ionisation edges.
  •  
3.
  • Kuldkepp, Mattias, 1976- (author)
  • Diagnostics for advanced fusion plasma scenarios
  • 2006
  • Doctoral thesis (other academic/artistic)abstract
    • Over the past decade, fusion research has showed the potential of being a main candidate for energy production for future generations. Further advances in improved fusion performance are therefore vital. This thesis focuses on advanced fusion plasma scenarios and their diagnostic requirements. In particular the design of a motional Stark effect (MSE) diagnostic at the MAST spherical tokamak and the analysis of magneto-hydrodynamic mode feedback control and pulsed poloidal current drive (PPCD) at the reversed field pinch (RFP) experiment EXTRAP T2R are discussed. The MSE diagnostic is important for the determination of the plasma current profile, information that is necessary for studies in advanced confinement scenarios like reversed shear profiles or current holes. The MAST MSE system has two channels and selects the spectral components using 1Å FWHM interference filters. The diagnostic has been commissioned during the fall of 2006 and the results show the feasibility of the technique with rms-noise ~0.5° using a time resolution of 1 ms. Investigations of mirror labyrinths for the future ITER MSE diagnostic highlight the need for careful calibration considerations. Feedback control and PPCD are techniques for improved confinement. Feedback control dramatically decreases impurity influx at the end of discharges while transport in the bulk plasma is largely unaffected. During PPCD the transport is seen to decrease and it is demonstrated that PPCD and feedback control can be employed simultaneously. New and innovative techniques for fusion spectroscopy are furthermore described. This includes the use of correlations in line integrated signals to determine ion emission profiles in poloidally symmetric environments. Good agreement with other diagnostic methods is obtained. The assessment of electron temperature profiles using measured differences between Thomson scattering and vacuum ultra-violet spectroscopy is also shown.
  •  
4.
  •  
5.
  •  
6.
  • Melero Garcia, Emilio, 1978- (author)
  • Synchrotron radiation spectroscopy of molecular dynamics beyond the valence shell
  • 2006
  • Doctoral thesis (other academic/artistic)abstract
    • This thesis presents experimental results on molecular spectroscopy of gas phase molecules using synchrotron radiation. It deals mainly with dynamical processes following resonant excitation of electrons from core and inner-valence shells of the following systems H2O, H2, SF6 and CD4. In order to reach these deep electrons and excite them photons in the energy range from 25 to 550 eV were used, depending on the particular system. Two experimental techniques are used. Photon induced fluorescence spectroscopy is used to study the fluorescence emission of fragments after the decay of resonant coreexcited states for the water molecule, and after doubly excited states and resonant excitations of inner-shell electrons for H2 and SF6 respectively. Only the emission in the visible and near infrared range (300-900nm) and the Lyman-α transitions are measured. Energy resolved electron-ion coincidence is used for the study of the fragmentation of CD4 and SF6 after selective ionisation of one of the outer-valence orbitals. In the case of CD4 the fragmentation is compared for the cases in which the ionisation is done directly, or through participator Auger decay of different resonantly core-excited states.
  •  
7.
  • Menmuir, Sheena, 1979- (author)
  • Visible spectroscopic diagnostics : application and development in fusion plasmas
  • 2007
  • Doctoral thesis (other academic/artistic)abstract
    • Diagnostic measurements play a vital role in experiments. Without them we would be in the dark with no way of knowing what was happening; of understanding the processes and behaviour occurring; or even of judging the success or failure of our experiments. The development of fusion plasma devices is no different. In this thesis we concentrate on visible spectroscopy based diagnostics: examining the techniques for measurement and analysis; the breadth of plasma parameters that can be extracted from the spectroscopic data; and how the application of these diagnostic techniques gives us a broader picture of the plasma and the events taking place within. Techniques are developed and applied to plasmas in three fusion experiments, EXTRAP T2R, ASDEX Upgrade and JET. The diagnostic techniques exploit different features of the measurements of the emitted photons to obtain various useful plasma parameters. Determination of the ion temperature and rotation velocity of oxygen impurity ions in the EXTRAP T2R plasma is achieved through measurement and analysis of, respectively, the Doppler broadening and the Doppler wavelength shift of visible wavelength atomic spectral lines. The evolution of the temperature and rotation is studied as a function of the discharge parameters, in particular looking at the effect of applying active feedback control schemes to the resistive wall modes and/or pulsed poloidal current drive. Measurements of multiple ionisation stages are used to estimate radial profiles of the toroidal rotation and the ion temperature and correlations between the ion rotations and the rotation velocities of tearing modes are also established. Radial profiles of the emissivity and density (or concentration) of the oxygen ions are obtained by means of measurements of the spectral line intensities on a small array of linesof- sight through the plasma. Changes to the profiles for different plasma schemes and the implications for particle transport are investigated. The derived emissivity profiles are used in the analysis for some of the other spectroscopic diagnostics. Spectral line intensity measurements (in this case of neutral ions) are also the basis for calculations of both the electron temperature and the particle fluxes at the plasma edge. The latter is an indicator of the degree and type of interaction between the plasma and the surrounding surfaces. Particle fluxes of the operating gas hydrogen and of chromium and molybdenum impurities are investigated in EXTRAP T2R for different operating scenarios, in particular changes in the metallic influx with the application of active feedback mode control are examined along with the correspondence between spectroscopic and collector probe results. In the ASDEX Upgrade divertor estimates of the particle flux of the deuterium operating gas are also made through analysis of spectral intensities. Molecular D2 band structure is explored in addition to the Balmer Dα spectral line intensity to acquire both atomic and molecular particle fluxes, investigate the contribution of the dissociating D2 to the Dα line and study the effect of changes in the divertor. Analysis of the D2 molecular band structure (the relative intensities of the rotational lines and vibrational bands) also enables calculation of the upper state rotational and ground state vibrational temperatures. The locations of emitting atomic ions in JET are estimated from Zeeman splitting analysis of the structure of their spectral lines. The measurement and analysis of visible wavelength light is demonstrated to be a sensitive diagnostic tool in the quest for increased knowledge about fusion plasmas and their operating scenarios.
  •  
8.
  • Menmuir, Sheena (author)
  • Visible spectroscopy as a sensitive diagnostic tool for fusion plasmas
  • 2005
  • Licentiate thesis (other academic/artistic)abstract
    • To further the understanding and knowledge about fusion plasmas and their behaviour during different conditions, it is important to be able to collect information about the plasma and the processes occurring within it. Visible spectroscopy, or the study of the visible wavelength light emitted by the plasma, is a useful tool in this search for knowledge. This thesis is based on experiments where visible wavelength light has been measured and analysed in order to determine quantities about the emitting source. Doppler shift measurements of spectral lines have been utilised to determine the toroidal rotation velocities of plasma impurity ions and to study the correlation with mode rotation and the effect of active feedback control of the resistive wall modes. Information on the impurities present in the plasma has been determined and the calibrated intensities of spectral lines has yielded impurity concentrations, particle fluxes and electron temperature and densities. Ion temperatures have been determined from Doppler broadening measurements. The measured vibrational and rotational band structure of deuterium molecular spectra has been analysed in order to calculate rotational and vibrational temperatures, relative populations and molecular particle fluxes. The effect of the molecular flux on simple calculations of atomic flux has also been studied. Specific molecular states and transitions of deuterium have also been probed with synchrotron radiation to study the level and transition energies. The measurement and analysis of visible wavelength light has been demonstrated to be a sensitive diagnostic tool in the quest for increased knowledge about fusion plasmas and molecular structure.
  •  
9.
  • Vall-Llosera, Gemma (author)
  • Flourescence properties of trendy molecules studied with synchrotron radiation
  • 2006
  • Licentiate thesis (other academic/artistic)abstract
    • This thesis summarises the experimental results on molecular spectroscopy of gas phase molecules using synchrotron radiation in the UV- VUV and soft-X rays regions. The results of applying Photon Induced Fluorescence Spectroscopy (PIFS) to D2, H2S, H2O and pyrimidine are presented and discussed. Both inner and outer shell excitations of free molecules lead to different relaxation processes. However, a common result is that when the molecule breaks and the resulting neutral fragments are left in an excited state, they might fluoresce in the UV- Vis range. PIFS technique has two main advantages, it permits to detect neutral fragments and to identify the fluorescing species. From this fact, we can infer dissociation channels and trace back the electronic processes that led to the fluorescence. For these molecules we have analysed and interpreted both dispersed and undispersed fluorescence. What motivates our work is the lack of fluorescence studies and in a more general sense, to contribute to the knowledge of important molecules for life such as water and pyrimidine.
  •  
10.
  • Vall-llosera, Gemma, 1975- (author)
  • Synchrotron radiation studies of gas phase molecules : from hydrogen to DNA sugars
  • 2008
  • Doctoral thesis (other academic/artistic)abstract
    • This thesis summarises experimental results on the molecular spectroscopy of gas phase molecules excited by synchrotron radiation in the VUV and soft X-ray regions. We have used three different detection techniques, photon induced fluorescence spectroscopy, photoionisation mass spectroscopy and near edge X-ray absorption fine structure spectroscopy to study molecular deuterium, hydrogen sulphide, ammonia, methanol, pyridine, pyridazine, pyrimidine, pyrazine, s-triazine, and 2-deoxy-D-ribose, the last one also known as the DNA sugar. Out of this variety of techniques and molecules we have shown that: (1) high resolution dispersed fluorescence allows us to identify vibrational and rotational bands in molecular deuterium, as well as to estimate the predissociation probability of the same molecule [paper I]; (2) the main species fluorescing after core excitation of methane, ammonia [paper III], hydrogen sulphide [paper II], pyridine, pyrimidine and s-triazine is H Balmer α, followed by fluorescence from ionised species, molecular bands and Balmer β, γ , δ; (3) the Rydberg enhancement seen in fluorescence measurements of water [Melero et al. PRL 96 (2006) 063003], corroborated later in H2S [paper II], NH3 [paper III] and CH4 [paper III] and postulated as general behaviour for molecules formed by low-Z atoms, is also seen in larger organic cyclic molecules, e.g. azabenzenes; (4) when dissociative ionisation of pyridine, pyridazine, pyrimidine, pyrazine, s-triazine and 2-deoxy-D-ribose occurs, concerted bond rearrangement and nuclear motion takes place as opposed to stepwise dissociation [papers V and VI].
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view