1. 
 Akrami, Y., et al.
(författare)

Planck 2018 results IX. Constraints on primordial nonGaussianity
 2020

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 641

Tidskriftsartikel (refereegranskat)abstract
 We analyse the Planck fullmission cosmic microwave background (CMB) temperature and Emode polarization maps to obtain constraints on primordial nonGaussianity (NG). We compare estimates obtained from separable templatefitting, binned, and optimal modal bispectrum estimators, finding consistent values for the local, equilateral, and orthogonal bispectrum amplitudes. Our combined temperature and polarization analysis produces the following final results: (local)(NL) = 0.9 +/ 5.1 f NL local =  0.9 +/ 5.1 ; f(NL)(equil) = 26 +/ 47 f NL equil =  26 +/ 47 ; and f(NL)(ortho) = 38 +/ 24 f NL ortho =  38 +/ 24 (68% CL, statistical). These results include lowmultipole (4 <= l< 40) polarization data that are not included in our previous analysis. The results also pass an extensive battery of tests (with additional tests regarding foreground residuals compared to 2015), and they are stable with respect to our 2015 measurements (with small fluctuations, at the level of a fraction of a standard deviation, which is consistent with changes in data processing). Polarizationonly bispectra display a significant improvement in robustness; they can now be used independently to set primordial NG constraints with a sensitivity comparable to WMAP temperaturebased results and they give excellent agreement. In addition to the analysis of the standard local, equilateral, and orthogonal bispectrum shapes, we consider a large number of additional cases, such as scaledependent feature and resonance bispectra, isocurvature primordial NG, and paritybreaking models, where we also place tight constraints but do not detect any signal. The nonprimordial lensing bispectrum is, however, detected with an improved significance compared to 2015, excluding the null hypothesis at 3.5. Beyond estimates of individual shape amplitudes, we also present modelindependent reconstructions and analyses of the Planck CMB bispectrum. Our final constraint on the local primordial trispectrum shape is g(NL)(local) = (5.8 +/ 6.5) x 10(4) g NL local = (  5.8 +/ 6.5 ) x 10 4 (68% CL, statistical), while constraints for other trispectrum shapes are also determined. Exploiting the tight limits on various bispectrum and trispectrum shapes, we constrain the parameter space of different earlyUniverse scenarios that generate primordial NG, including general singlefield models of inflation, multifield models (e.g. curvaton models), models of inflation with axion fields producing parityviolation bispectra in the tensor sector, and inflationary models involving vectorlike fields with directionallydependent bispectra. Our results provide a highprecision test for structureformation scenarios, showing complete agreement with the basic picture of the Lambda CDM cosmology regarding the statistics of the initial conditions, with cosmic structures arising from adiabatic, passive, Gaussian, and primordial seed perturbations.


2. 
 Abdalla, E., et al.
(författare)

Cosmology intertwined : A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies
 2022

Ingår i: Journal of High Energy Astrophysics.  : Elsevier BV.  22144048 . 22144056. ; 34, s. 49211

Tidskriftsartikel (refereegranskat)abstract
 The standard Λ Cold Dark Matter (ΛCDM) cosmological model provides a good description of a wide range of astrophysical and cosmological data. However, there are a few big open questions that make the standard model look like an approximation to a more realistic scenario yet to be found. In this paper, we list a few important goals that need to be addressed in the next decade, taking into account the current discordances between the different cosmological probes, such as the disagreement in the value of the Hubble constant H0, the σ8–S8 tension, and other less statistically significant anomalies. While these discordances can still be in part the result of systematic errors, their persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the necessity for new physics or generalisations beyond the standard model. In this paper, we focus on the 5.0σ tension between the Planck CMB estimate of the Hubble constant H0 and the SH0ES collaboration measurements. After showing the H0 evaluations made from different teams using different methods and geometric calibrations, we list a few interesting new physics models that could alleviate this tension and discuss how the next decade's experiments will be crucial. Moreover, we focus on the tension of the Planck CMB data with weak lensing measurements and redshift surveys, about the value of the matter energy density Ωm, and the amplitude or rate of the growth of structure (σ8,fσ8). We list a few interesting models proposed for alleviating this tension, and we discuss the importance of trying to fit a full array of data with a single model and not just one parameter at a time. Additionally, we present a wide range of other less discussed anomalies at a statistical significance level lower than the H0–S8 tensions which may also constitute hints towards new physics, and we discuss possible generic theoretical approaches that can collectively explain the nonstandard nature of these signals. Finally, we give an overview of upgraded experiments and nextgeneration space missions and facilities on Earth that will be of crucial importance to address all these open questions.


3. 
 Adam, R., et al.
(författare)

Planck 2015 results IX. Diffuse component separation : CMB maps
 2016

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 594

Tidskriftsartikel (refereegranskat)abstract
 We present foregroundreduced cosmic microwave background (CMB) maps derived from the full Planck data set in both temperature and polarization. Compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.2 for frequencies between 30 and 70 GHz, and by 1.9 for frequencies between 100 and 857 GHz. In addition, systematic errors in the forms of temperaturetopolarization leakage, analoguetodigital conversion uncertainties, and very long time constant errors have been dramatically reduced, to the extent that the cosmological polarization signal may now be robustly recovered on angular scales l greater than or similar to 40. On the very largest scales, instrumental systematic residuals are still nonnegligible compared to the expected cosmological signal, and modes with l < 20 are accordingly suppressed in the current polarization maps by highpass filtering. As in 2013, four different CMB component separation algorithms are applied to these observations, providing a measure of stability with respect to algorithmic and modelling choices. The resulting polarization maps have rms instrumental noise ranging between 0.21 and 0.27 mu K averaged over 55' pixels, and between 4.5 and 6.1 mu K averaged over 3.'4 pixels. The cosmological parameters derived from the analysis of temperature power spectra are in agreement at the 1 sigma level with the Planck 2015 likelihood. Unresolved mismatches between the noise properties of the data and simulations prevent a satisfactory description of the higherorder statistical properties of the polarization maps. Thus, the primary applications of these polarization maps are those that do not require massive simulations for accurate estimation of uncertainties, for instance estimation of crossspectra and crosscorrelations, or stacking analyses. However, the amplitude of primordial nonGaussianity is consistent with zero within 2 sigma for all local, equilateral, and orthogonal configurations of the bispectrum, including for polarization Emodes. Moreover, excellent agreement is found regarding the lensing Bmode power spectrum, both internally among the various component separation codes and with the bestfit Planck 2015 Lambda cold dark matter model.


4. 
 Adam, R., et al.
(författare)

Planck intermediate results XLVII. Planck constraints on reionization history
 2016

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 596

Tidskriftsartikel (refereegranskat)abstract
 We investigate constraints on cosmic reionization extracted from the Planck cosmic microwave background (CMB) data. We combine the Planck CMB anisotropy data in temperature with the lowmultipole polarization data to fit Lambda CDM models with various parameterizations of the reionization history. We obtain a Thomson optical depth tau = 0.058 +/ 0.012 for the commonly adopted instantaneous reionization model. This confirms, with data solely from CMB anisotropies, the low value suggested by combining Planck 2015 results with other data sets, and also reduces the uncertainties. We reconstruct the history of the ionization fraction using either a symmetric or an asymmetric model for the transition between the neutral and ionized phases. To determine better constraints on the duration of the reionization process, we also make use of measurements of the amplitude of the kinetic SunyaevZeldovich (kSZ) effect using additional information from the highresolution Atacama Cosmology Telescope and South Pole Telescope experiments. The average redshift at which reionization occurs is found to lie between z = 7.8 and 8.8, depending on the model of reionization adopted. Using kSZ constraints and a redshiftsymmetric reionization model, we find an upper limit to the width of the reionization period of Delta z < 2.8. In all cases, we find that the Universe is ionized at less than the 10% level at redshifts above z similar or equal to 10. This suggests that an early onset of reionization is strongly disfavoured by the Planck data. We show that this result also reduces the tension between CMBbased analyses and constraints from other astrophysical sources.


5. 
 Ade, P. A. R., et al.
(författare)

Planck 2015 results XVII. Constraints on primordial nonGaussianity
 2016

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 594

Tidskriftsartikel (refereegranskat)abstract
 The Planck full mission cosmic microwave background (CMB) temperature and Emode polarization maps are analysed to obtain constraints on primordial nonGaussianity (NG). Using three classes of optimal bispectrum estimators  separable templatefitting (KSW), binned, and modal we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result from temperature alone f(NL)(local) = 2.5 +/ 5.7, f(NL)(equil) = 16 +/ 70, and f(NL)(ortho) = 34 +/ 33 (68% CL, statistical). Combining temperature and polarization data we obtain f(NL)(local) = 0.8 +/ 5.0, f(NL)(equil) = 4 +/ 43, and f(NL)(ortho) = 26 +/ 21 (68% CL, statistical). The results are based on comprehensive crossvalidation of these estimators on Gaussian and nonGaussian simulations, are stable across component separation techniques, pass an extensive suite of tests, and are consistent with estimators based on measuring the Minkowski functionals of the CMB. The effect of timedomain deglitching systematics on the bispectrum is negligible. In spite of these test outcomes we conservatively label the results including polarization data as preliminary, owing to a known mismatch of the noise model in simulations and the data. Beyond estimates of individual shape amplitudes, we present modelindependent, threedimensional reconstructions of the Planck CMB bispectrum and derive constraints on early universe scenarios that generate primordial NG, including general singlefield models of inflation, axion inflation, initial state modifications, models producing parityviolating tensor bispectra, and directionally dependent vector models. We present a wide survey of scaledependent feature and resonance models, accounting for the look elsewhere effect in estimating the statistical significance of features. We also look for isocurvature NG, and find no signal, but we obtain constraints that improve significantly with the inclusion of polarization. The primordial trispectrum amplitude in the local model is constrained to be g(NL)(local) = (9.0 +/ 7.7) x 10(4) (68% CL statistical), and we perform an analysis of trispectrum shapes beyond the local case. The global picture that emerges is one of consistency with the premises of the Lambda CDM cosmology, namely that the structure we observe today was sourced by adiabatic, passive, Gaussian, and primordial seed perturbations.


6. 
 Aghanim, N., et al.
(författare)

Planck intermediate results LIII. Detection of velocity dispersion from the kinetic SunyaevZeldovich effect
 2018

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 617

Tidskriftsartikel (refereegranskat)abstract
 Using the Planck fullmission data, we present a detection of the temperature (and therefore velocity) dispersion due to the kinetic SunyaevZeldovich (kSZ) effect from clusters of galaxies. To suppress the primary CMB and instrumental noise we derive a matched filter and then convolve it with the Planck foregroundcleaned 2D ILC maps. By using the Meta Catalogue of Xray detected Clusters of galaxies (MCXC), we determine the normalized rms dispersion of the temperature fluctuations at the positions of clusters, finding that this shows excess variance compared with the noise expectation. We then build an unbiased statistical estimator of the signal, determining that the normalized mean temperature dispersion of 1526 clusters is <(Delta T/T)(2))> = (1.64 +/ 0.48) x 10(11). However, comparison with analytic calculations and simulations suggest that around 0.7 sigma of this result is due to cluster lensing rather than the kSZ effect. By correcting this, the temperature dispersion is measured to be <(Delta T/T)(2))> = (1.35 +/ 0.48) x 10(11), which gives a detection at the 2.8 sigma level. We further convert uniformweight temperature dispersion into a measurement of the lineofsight velocity dispersion, by using estimates of the optical depth of each cluster (which introduces additional uncertainty into the estimate). We find that the velocity dispersion is (v(2)) = (123 000 +/ 71 000) (km s(1))(2), which is consistent with findings from other largescale structure studies, and provides direct evidence of statistical homogeneity on scales of 600 h(1) Mpc. Our study shows the promise of using crosscorrelations of the kSZ effect with largescale structure in order to constrain the growth of structure.


7. 
 Aghanim, N., et al.
(författare)

Planck intermediate results XLVI. Reduction of largescale systematic effects in HFI polarization maps and estimation of the reionization optical depth
 2016

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 596

Tidskriftsartikel (refereegranskat)abstract
 This paper describes the identification, modelling, and removal of previously unexplained systematic effects in the polarization data of the Planck High Frequency Instrument (HFI) on large angular scales, including new mapmaking and calibration procedures, new and more complete endtoend simulations, and a set of robust internal consistency checks on the resulting maps. These maps, at 100, 143, 217, and 353 GHz, are early versions of those that will be released in final form later in 2016. The improvements allow us to determine the cosmic reionization optical depth tau using, for the first time, the lowmultipole EE data from HFI, reducing significantly the central value and uncertainty, and hence the upper limit. Two different likelihood procedures are used to constrain tau from two estimators of the CMB E and Bmode angular power spectra at 100 and 143 GHz, after debiasing the spectra from a small remaining systematic contamination. These all give fully consistent results. A further consistency test is performed using crosscorrelations derived from the Low Frequency Instrument maps of the Planck 2015 data release and the new HFI data. For this purpose, endtoend analyses of systematic effects from the two instruments are used to demonstrate the near independence of their dominant systematic error residuals. The tightest result comes from the HFIbased tau posterior distribution using the maximum likelihood power spectrum estimator from EE data only, giving a value 0.055 +/ 0.009. In a companion paper these results are discussed in the context of the bestfit Planck Lambda CDM cosmological model and recent models of reionization.


8. 
 Aghanim, N., et al.
(författare)

Planck intermediate results LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters
 2017

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 607

Tidskriftsartikel (refereegranskat)abstract
 The six parameters of the standard Lambda CDM model have bestfit values derived from the Planck temperature power spectrum that are shifted somewhat from the bestfit values derived from WMAP data. These shifts are driven by features in the Planck temperature power spectrum at angular scales that had never before been measured to cosmicvariance level precision. We have investigated these shifts to determine whether they are within the range of expectation and to understand their origin in the data. Taking our parameter set to be the optical depth of the reionized intergalactic medium tau, the baryon density omega(b), the matter density omega(m), the angular size of the sound horizon theta(*), the spectral index of the primordial power spectrum, n(s), and A(s)e(2 pi) (where As is the amplitude of the primordial power spectrum), we have examined the change in bestfit values between a WMAPlike large angularscale data set (with multipole moment l < 800 in the Planck temperature power spectrum) and an all angularscale data set (l < 2500 Planck temperature power spectrum), each with a prior on tau of 0.07 +/ 0.02. We find that the shifts, in units of the 1 sigma expected dispersion for each parameter, are {Delta tau, Delta A(s)e(2 tau), Delta n(s), Delta omega(m), Delta omega(b), Delta theta(*)} = {1.7, 2.2, 1.2, 2.0, 1.1, 0.9}, with a chi(2) value of 8.0. We find that this chi(2) value is exceeded in 15% of our simulated data sets, and that a parameter deviates by more than 2.2 sigma in 9% of simulated data sets, meaning that the shifts are not unusually large. Comparing l < 800 instead to l > 800, or splitting at a different multipole, yields similar results. We examined the l < 800 model residuals in the l > 800 power spectrum data and find that the features there that drive these shifts are a set of oscillations across a broad range of angular scales. Although they partly appear similar to the effects of enhanced gravitational lensing, the shifts in Lambda CDM parameters that arise in response to these features correspond to model spectrum changes that are predominantly due to nonlensing effects; the only exception is tau, which, at fixed A(s)e(2 tau), affects the l > 800 temperature power spectrum solely through the associated change in As and the impact of that on the lensing potential power spectrum. We also ask, what is it about the power spectrum at l < 800 that leads to somewhat different bestfit parameters than come from the full l range? We find that if we discard the data at l < 30, where there is a roughly 2 sigma downward fluctuation in power relative to the model that best fits the full l range, the l < 800 bestfit parameters shift significantly towards the l < 2500 bestfit parameters. In contrast, including l < 30, this previously noted lowl deficit drives ns up and impacts parameters correlated with ns, such as omega(m) and H0. As expected, the l < 30 data have a much greater impact on the l < 800 best fit than on the l < 2500 best fit. So although the shifts are not very significant, we find that they can be understood through the combined effects of an oscillatorylike set of highl residuals and the deficit in lowl power, excursions consistent with sample variance that happen to map onto changes in cosmological parameters. Finally, we examine agreement between Planck TT data and two other CMB data sets, namely the Planck lensing reconstruction and the TT power spectrum measured by the South Pole Telescope, again finding a lack of convincing evidence of any significant deviations in parameters, suggesting that current CMB data sets give an internally consistent picture of the Lambda CDM model.


9. 
 Aghanim, N., et al.
(författare)

Planck intermediate results XLIX. Parityviolation constraints from polarization data
 2016

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 596

Tidskriftsartikel (refereegranskat)abstract
 Parityviolating extensions of the standard electromagnetic theory cause in vacuo rotation of the plane of polarization of propagating photons. This effect, also known as cosmic birefringence, has an impact on the cosmic microwave background (CMB) anisotropy angular power spectra, producing nonvanishing TB and EB correlations that are otherwise null when parity is a symmetry. Here we present new constraints on an isotropic rotation, parametrized by the angle alpha, derived from Planck 2015 CMB polarization data. To increase the robustness of our analyses, we employ two complementary approaches, in harmonic space and in map space, the latter based on a peak stacking technique. The two approaches provide estimates for alpha that are in agreement within statistical uncertainties and are very stable against several consistency tests. Considering the TB and EB information jointly, we find alpha = 0 degrees: 31 +/ 0 degrees.05 (stat:) +/ 0 degrees:28 (syst:) from the harmonic analysis and alpha = 0 degrees.35 +/ 0 degrees.05 (stat :) 0 degrees.28 (syst :) from the stacking approach. These constraints are compatible with no parity violation and are dominated by the systematic uncertainty in the orientation of Planck's polarizationsensitive bolometers.


10. 
 Aghanim, N., et al.
(författare)

Planck intermediate results XLVIII. Disentangling Galactic dust emission and cosmic infrared background anisotropies
 2016

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 596

Tidskriftsartikel (refereegranskat)abstract
 Using the Planck 2015 data release (PR2) temperature maps, we separate Galactic thermal dust emission from cosmic infrared background (CIB) anisotropies. For this purpose, we implement a specifically tailored componentseparation method, the socalled generalized needlet internal linear combination (GNILC) method, which uses spatial information (the angular power spectra) to disentangle the Galactic dust emission and CIB anisotropies. We produce significantly improved allsky maps of Planck thermal dust emission, with reduced CIB contamination, at 353, 545, and 857 GHz. By reducing the CIB contamination of the thermal dust maps, we provide more accurate estimates of the local dust temperature and dust spectral index over the sky with reduced dispersion, especially at high Galactic latitudes above b = +/ 20 degrees. We find that the dust temperature is T = (19.4 +/ 1.3) K and the dust spectral index is beta = 1.6 +/ 0.1 averaged over the whole sky, while T = (19.4 +/ 1.5) K and beta = 1.6 +/ 0.2 on 21% of the sky at high latitudes. Moreover, subtracting the new CIBremoved thermal dust maps from the CMBremoved Planck maps gives access to the CIB anisotropies over 60% of the sky at Galactic latitudes vertical bar b vertical bar > 20 degrees. Because they are a significant improvement over previous Planck products, the GNILC maps are recommended for thermal dust science. The new CIB maps can be regarded as indirect tracers of the dark matter and they are recommended for exploring crosscorrelations with lensing and largescale structure optical surveys. The reconstructed GNILC thermal dust and CIB maps are delivered as Planck products.

