SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rae W) ;lar1:(uu)"

Sökning: WFRF:(Rae W) > Uppsala universitet

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aartsen, M. G., et al. (författare)
  • The IceProd framework : Distributed data processing for the IceCube neutrino observatory
  • 2015
  • Ingår i: Journal of Parallel and Distributed Computing. - : Elsevier BV. - 0743-7315 .- 1096-0848. ; 75, s. 198-211
  • Tidskriftsartikel (refereegranskat)abstract
    • IceCube is a one-gigaton instrument located at the geographic South Pole, designed to detect cosmic neutrinos, identify the particle nature of dark matter, and study high-energy neutrinos themselves. Simulation of the IceCube detector and processing of data require a significant amount of computational resources. This paper presents the first detailed description of IceProd, a lightweight distributed management system designed to meet these requirements. It is driven by a central database in order to manage mass production of simulations and analysis of data produced by the IceCube detector. IceProd runs as a separate layer on top of other middleware and can take advantage of a variety of computing resources, including grids and batch systems such as CREAM, HTCondor, and PBS. This is accomplished by a set of dedicated daemons that process job submission in a coordinated fashion through the use of middleware plugins that serve to abstract the details of job submission and job management from the framework. (C) 2014 Elsevier Inc. All rights reserved.
  •  
2.
  • Angelopoulos, V., et al. (författare)
  • First Results from the THEMIS Mission
  • 2008
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 141:1-4, s. 453-476
  • Forskningsöversikt (refereegranskat)abstract
    • THEMIS was launched on February 17, 2007 to determine the trigger and large-scale evolution of substorms. During the first seven months of the mission the five satellites coasted near their injection orbit to avoid differential precession in anticipation of orbit placement, which started in September 2007 and led to a commencement of the baseline mission in December 2007. During the coast phase the probes were put into a string-of-pearls configuration at 100 s of km to 2 R-E along-track separations, which provided a unique view of the magnetosphere and enabled an unprecedented dataset in anticipation of the first tail season. In this paper we describe the first THEMIS substorm observations, captured during instrument commissioning on March 23, 2007. THEMIS measured the rapid expansion of the plasma sheet at a speed that is commensurate with the simultaneous expansion of the auroras on the ground. These are the first unequivocal observations of the rapid westward expansion process in space and on the ground. Aided by the remote sensing technique at energetic particle boundaries and combined with ancillary measurements and MHD simulations, they allow determination and mapping of space currents. These measurements show the power of the THEMIS instrumentation in the tail and the radiation belts. We also present THEMIS Flux Transfer Events (FTE) observations at the magnetopause, which demonstrate the importance of multi-point observations there and the quality of the THEMIS instrumentation in that region of space.
  •  
3.
  • Fairfield, Heather, et al. (författare)
  • Mutation discovery in mice by whole exome sequencing
  • 2011
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 12:9, s. R86-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the development and optimization of reagents for in-solution, hybridization-based capture of the mouse exome. By validating this approach in a multiple inbred strains and in novel mutant strains, we show that whole exome sequencing is a robust approach for discovery of putative mutations, irrespective of strain background. We found strong candidate mutations for the majority of mutant exomes sequenced, including new models of orofacial clefting, urogenital dysmorphology, kyphosis and autoimmune hepatitis.
  •  
4.
  • Hon, Marc, et al. (författare)
  • A close-in giant planet escapes engulfment by its star
  • 2023
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 618:7967, s. 917-920
  • Tidskriftsartikel (refereegranskat)abstract
    • When main-sequence stars expand into red giants, they are expected to engulf close-in planets(1-5). Until now, the absence of planets with short orbital periods around post-expansion, core-helium-burning red giants(6-8) has been interpreted as evidence that short-period planets around Sun-like stars do not survive the giant expansion phase of their host stars(9). Here we present the discovery that the giant planet 8 Ursae Minoris b(10) orbits a core-helium-burning red giant. At a distance of only 0.5 au from its host star, the planet would have been engulfed by its host star, which is predicted by standard single-star evolution to have previously expanded to a radius of 0.7 au. Given the brief lifetime of helium-burning giants, the nearly circular orbit of the planet is challenging to reconcile with scenarios in which the planet survives by having a distant orbit initially. Instead, the planet may have avoided engulfment through a stellar merger that either altered the evolution of the host star or produced 8 Ursae Minoris b as a second-generation planet(11). This system shows that core-helium-burning red giants can harbour close planets and provides evidence for the role of non-canonical stellar evolution in the extended survival of late-stage exoplanetary systems.
  •  
5.
  • Ling, Yiming, et al. (författare)
  • Observations of Kelvin-Helmholtz Waves in the Earth's Magnetotail Near the Lunar Orbit
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 123:5, s. 3836-3847
  • Tidskriftsartikel (refereegranskat)abstract
    • Kelvin‐Helmholtz waves (KHWs), which have been widely observed at the magnetopause in the region near the Earth, play an essential role in the transport of solar wind plasma and energy into the magnetosphere under dominantly northward interplanetary magnetic field (IMF) conditions. In this study, we present simultaneous observations of KHWs under the northward IMF observed by both the Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) spacecraft in the Earth's magnetotail around the lunar orbit (at X ~ −50RE, Y ~ 30RE, dusk side) and the Geotail in the near‐Earth space (at X ~ −5RE, Y ~ −10RE, dawn side). The KHWs are quantitatively characterized by their dominant period, phase velocity, and wavelength, utilizing wavelet analysis and an approximation of their center‐of‐mass velocity. Our results suggest that the phase velocity and spatial scale of KHWs may increase as they propagate along the boundary layer toward the tail. Alternatively, the differences between the ARTEMIS and Geotail observations may indicate the possibility of dawn‐dusk asymmetry in the excited KHWs in this study. Our results strongly evidence the existence of the development of KHWs in terms of their wave frequency and scale size in the magnetotail and provide insight to the time evolution of KHWs along the magnetopause.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy