SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rahman M) ;lar1:(kth)"

Sökning: WFRF:(Rahman M) > Kungliga Tekniska Högskolan

  • Resultat 1-10 av 34
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Delios, A., et al. (författare)
  • Examining the generalizability of research findings from archival data
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:30
  • Tidskriftsartikel (refereegranskat)abstract
    • This initiative examined systematically the extent to which a large set of archival research findings generalizes across contexts. We repeated the key analyses for 29 original strategic management effects in the same context (direct reproduction) as well as in 52 novel time periods and geographies; 45% of the reproductions returned results matching the original reports together with 55% of tests in different spans of years and 40% of tests in novel geographies. Some original findings were associated with multiple new tests. Reproducibility was the best predictor of generalizability-for the findings that proved directly reproducible, 84% emerged in other available time periods and 57% emerged in other geographies. Overall, only limited empirical evidence emerged for context sensitivity. In a forecasting survey, independent scientists were able to anticipate which effects would find support in tests in new samples. 
  •  
2.
  •  
3.
  •  
4.
  • Hossain, Mohammed, 1960-, et al. (författare)
  • Sustainable Arsenic Mitigation (SASMIT) : An approach for developing a color based tool for targeting arsenic-safe aquifers for drinking water supply
  • 2012
  • Ingår i: METALS AND RELATED SUBSTANCES IN DRINKING WATER. - : IWA PUBLISHING. ; , s. 272-276
  • Konferensbidrag (refereegranskat)abstract
    • Presence of high concentration of geogenic arsenic (As) in water and soil become a big health risk towards millions of people in various magnitudes through drinking water. To minimize arsenic interaction with human considered as a global challenge. The main objective of this research is to develop a simple, easy and cost-effective arsenic identification tool which would be easily acceptable by the inhabitants and local well drillers. The relationship of sediment color and corresponding As concentrations in water has already been demonstrated and is being further studied under SASMIT project. A total of 1920 sediment samples from 15 locations bored up to a depth of 250 m have been scientifically evaluated according to the color codes using Munsell Color Chart. A total of 60 varieties observed and simplified into four color groups viz. black, white, off-white and red. It is revealed that red and off-white sands can be targeted for As-safe water. White sands can also be safe but uncertainty is high and black sediments produce water with highest As concentration, although Mn content in waters sampled from white and black sediments is relatively low. Further refinement is going on for improving the tool for targeting aquifers which can be safe for both arsenic and manganese.
  •  
5.
  •  
6.
  • Hossain, Mohammad, et al. (författare)
  • Strategic approach for up-scaling safe water access considering hydrogeological suitability and social mapping in Matlab, southeastern Bangladesh
  • 2013
  • Konferensbidrag (refereegranskat)abstract
    • In recent years, there has been a significant progress in understanding the source and mobilization process, sediment-water interactions, and distributions of arsenic in groundwater environment in Bangladesh. However, the impacts of arsenic mitigation are still very limited. A social survey conducted during 2009-2011 in 96 villages in Matlab revealed that only 18% of total tubewells provide As-safe water. The safe water access also varied between 0 and 90 percent in the region due to lack of knowledge about the local geology and unplanned tubewell development. SASMIT, an initiative of KTH-International Groundwater Arsenic Research Group has developed a method for safe tubewell installation considering hydrogeological suitability, safe water access and other relevant social and demographic information into account.Piezometers installed at 15 locations over an area of 410 km2, using local boring techniques allowed to delineate the hydrostratigraphy, characterize the aquifers in terms of sediment characteristics, water chemistry and hydraulic head distribution, which ultimately led to the identification of the suitable aquifers for tapping safe water. The piezometer locations with safe drinking water quality were then targeted for safe well installation based on the determination of safe buffer distances in a cluster of a few villages (mouzas). Social mapping of all the villages within the mauzas were done using GIS to evaluate the availability of safe water options for a cluster of households (bari). For safe well installations, priority was given to regions with safe water access, greater number of beneficiaries especially in poor households, and easy access to the site from a cluster of households. Through this approach, it was thus possible to make 95% of the newly installed wells As-safe thus scaled up the safe water access upto 40% in some mauzas. Thus the as a strategy to improve safe water access, the SASMIT study recommends investigating the hydrogeological suitability through installation of few piezometers with a minimum effort and based on the results the implementation plan can be made using GIS based social mappings for relatively uniform distribution and to maximize the safe water access.
  •  
7.
  •  
8.
  • Hossain, M., et al. (författare)
  • Potentiality of intermediate depth aquifer as a source of arsenic and manganese safe tubewells in Bangladesh
  • 2012
  • Ingår i: Understanding the Geological and Medical Interface of Arsenic, As 2012 - 4th International Congress: Arsenic in the Environment. - : Taylor & Francis Group. - 9780415637633 ; , s. 71-73
  • Konferensbidrag (refereegranskat)abstract
    • Shallow tubewells excepting those installed in red/off-white sediments are mostly contaminated with high arsenic. Social survey conducted in 96 villages of Matlab, a worse-affected area of Bangladesh, reveals that only 18% of tubewells provide As-safe water. In such a condition, high Manganese in many wells is found to be an additional problem. Based on monitoring in depth-specific piezometers, drinking water wells were installed in intermediate depth aquifer around 120 m. Ninety percent of the wells installed in light grey medium sand, had arsenic concentrations below the Bangladesh standard of 50 ÎŒg/L and manganese was within the previous WHO guideline (0.4 mg/L). Availability of similar sand over this depth range could be targeted by local drillers to tap safe water at a reasonable cost. Replication trials and periodical monitoring are emphasized for validation and sustainability.
  •  
9.
  • Sayeed, A., et al. (författare)
  • Handwashing with soap : A concern for overuse of water amidst the COVID-19 pandemic in Bangladesh
  • 2021
  • Ingår i: Groundwater for Sustainable Development. - : Elsevier BV. - 2352-801X. ; 13, s. 100561-
  • Tidskriftsartikel (refereegranskat)abstract
    • Handwashing is one of the vital public health measures. It helps to prevent the spread of the COVID-19 pandemic. However, water overuse during hand scrubbing with soap keeping the tap on may put enormous pressure on the already overstretched groundwater resources and households’ economic well-being. Therefore, this study aimed to determine the overuse of water while scrubbing hands with soap for handwashing when the tap is on amid the COVID-19 pandemic in Bangladesh. Sociodemographic data were collected using a web-based survey tool among 1980 participants and an experiment was conducted among 126 participants to estimate the overuse of water during hand scrubbing while the tap is on. A total of 80% of the participants washed their hands regularly after returning home from outside. About 57.3% of participants did not turn off their tap throughout the handwashing process. A single participant, who kept his tap on throughout the handwashing process, overused approximately 1.7 L of water per handwash and 14.9 L of water per day. Hand scrubbing with soap keeping the tap on, raised the overuse of water 13-fold during this pandemic compared to the non-pandemic situation which cost an extra 225.0 BDT (2.7$) per day for 1980 participants. Minimize the speed of tap, using automatic taps, and using taps operated by legs might be an effective solution to reduce the water overuse. Furthermore, behavioral change interventions are needed to aware people turn off the tap during hand scrubbing with soap.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 34

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy