SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rahman N) ;hsvcat:2"

Search: WFRF:(Rahman N) > Engineering and Technology

  • Result 1-10 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Nagaraja, Ch., et al. (author)
  • Opening remarks
  • 2016
  • Conference paper (peer-reviewed)
  •  
2.
  • Hossain, Mohammed, et al. (author)
  • Sustainability of arsenic mitigation interventions—an evaluation of different alternative safe drinking water options provided in Matlab, an arsenic hot spot in Bangladesh
  • 2015
  • In: Frontiers in Environmental Science. - : Frontiers Media. - 2296-665X. - 9781138001411 ; 3:30
  • Journal article (peer-reviewed)abstract
    • The wide spread occurrence of geogenic arsenic in Bangladesh groundwater drastically reduced the safe water access across the country. Since its discovery in 1993, different mitigation options tested at household and community scale have resulted in limited success. The main challenge is to develop a simple, cost-effective, and socially acceptable option which the users can install, operate and maintain by themselves. In an arsenic hotspot of southeastern Bangladesh, 841 arsenic removal filter (ARF), 190 surface water filter membrane, 23 pond sand filter (PSF), 147 rain water harvester (RWH) and 59 As-safe tubewell were distributed among the severely exposed population by AsMat, a Sida supported project. After 3–4 years of providing these safe water options, this study was carried out during 2009–2010 for performance analysis of these options, in terms of technical viability and effectiveness and thus to evaluate the preference of different options to the end users. Household and community based surveys were done to make an assessment of the current water use pattern as impact of the distributed options, overall condition of the options provided and to identify the reasons why these options are in use and/or abandoned. In total, 284 households were surveyed and information was collected for 23 PSF, 147 RWH, and 59 tubewells. None of the filters was found in use. Among other options distributed, 13% of PSF, 40% RWH, and 93% of tubewell were found functioning. In all cases, tubewells were found As-safe. About 89% of households are currently using tubewell water which was 58% before. Filter was abandoned for high cost and complicated maintenance. The use of RWH and PSF was not found user friendly and ensuring year round water quality is a big challenge. Arsenic-safe tubewell was found as a widely accepted option mainly because of its easy operation and availability of water, good water quality and negligible maintenance. This study validated tubewell as the most feasible drinking water supply option and this evaluation holds significance for planning water supply projects, improving mitigation policy as well as developing awareness among users.
  •  
3.
  • Dobsicek Trefna, Hana, 1979, et al. (author)
  • Quality assurance guidelines for superficial hyperthermia clinical trials: II. Technical requirements for heating devices
  • 2017
  • In: Strahlentherapie und Onkologie. - : Springer Science and Business Media LLC. - 1439-099X .- 0179-7158. ; 193:5, s. 351-366
  • Research review (peer-reviewed)abstract
    • Quality assurance (QA) guidelines are essential to provide uniform execution of clinical trials with uniform quality hyperthermia treatments. This document outlines the requirements for appropriate QA of all current superficial heating equipment including electromagnetic (radiative and capacitive), ultrasound, and infrared heating techniques. Detailed instructions are provided how to characterize and document the performance of these hyperthermia applicators in order to apply reproducible hyperthermia treatments of uniform high quality. Earlier documents used specific absorption rate (SAR) to define and characterize applicator performance. In these QA guidelines, temperature rise is the leading parameter for characterization of applicator performance. The intention of this approach is that characterization can be achieved with affordable equipment and easy-to-implement procedures. These characteristics are essential to establish for each individual applicator the specific maximum size and depth of tumors that can be heated adequately. The guidelines in this document are supplemented with a second set of guidelines focusing on the clinical application. Both sets of guidelines were developed by the European Society for Hyperthermic Oncology (ESHO) Technical Committee with participation of senior Society of Thermal Medicine (STM) members and members of the Atzelsberg Circle.
  •  
4.
  • Radenahmad, N., et al. (author)
  • Proton-conducting electrolytes for direct methanol and direct urea fuel cells - A state-of-the-art review
  • 2016
  • In: Renewable and Sustainable Energy Reviews. - : Elsevier BV. - 1879-0690 .- 1364-0321. ; 57, s. 1347-1358
  • Research review (peer-reviewed)abstract
    • This review focuses on the protonicisuperprotonic electrolytes used for application in direct methanol and direct urea/urine fuel cells. Since, methanol has. high energy density, which is essential for portable direct methanol fuel cells, and is simpler to store and transport than conventional hydrogen as fuel. However, methanol is not readily available, which makes waste an attractive option as a fuel source, resulting in the development of direct urea fuel cells. Fuel cells that use waste that contains hydrogen, like waste water or urine, are attractive because of their potential to generate energy from low-cost, abundant sources.
  •  
5.
  • Rahman, Aminur, 1984-, et al. (author)
  • Comparative genome analysis of Lysinibacillus B1-CDA, a bacterium that accumulates arsenics
  • 2015
  • In: Genomics. - : Elsevier. - 0888-7543 .- 1089-8646. ; 106:6, s. 384-392
  • Journal article (peer-reviewed)abstract
    • Previously, we reported an arsenic resistant bacterium Lysinibacillus sphaericus B1-CDA, isolated from an arsenic contaminated lands. Here, we have investigated its genetic composition and evolutionary history by using massively parallel sequencing and comparative analysis with other known Lysinibacillus genomes. Assembly of the sequencing reads revealed a genome of ~ 4.5 Mb in size encompassing ~ 80% of the chromosomal DNA. We found that the set of ordered contigs contains abundant regions of similarity with other Lysinibacillus genomes and clearly identifiable genome rearrangements. Furthermore, all genes of B1-CDA that were predicted be involved in its resistance to arsenic and/or other heavy metals were annotated. The presence of arsenic responsive genes was verified by PCR in vitro conditions. The findings of this study highlight the significance of this bacterium in removing arsenics and other toxic metals from the contaminated sources. The genetic mechanisms of the isolate could be used to cope with arsenic toxicity.
  •  
6.
  • Abdalla, Abdalla M., et al. (author)
  • Synthesis and characterization of Sm1-xZrxFe1-yMgyO3 (x, y = 0.5, 0.7, 0.9) as possible electrolytes for SOFCs
  • 2018
  • In: Key Engineering Materials. - 1013-9826 .- 1662-9795. ; 765 KEM, s. 49-53
  • Conference paper (peer-reviewed)abstract
    • The novel perovskite oxide series of Sm 1-x Zr x Fe 1-y Mg y O 3 (x,y = 0.5, 0.7, 0.9) were synthesized by solid state reaction method. X-ray diffraction (XRD), Rietveld refinement, scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and conductivity analysis were carried out. XRD patterns of sintered materials revealed the shifted Bragg reflection to higher angle for the higher content of Zr and Mg. This is related to the ionic size of the dopant elements. Rietveld refinement showed that all compounds crystallized in cubic space group of Fm-3m. SEM images showed that the grains were well defined with highly dense surfaces makes it potential as an electrolyte material in solid oxide fuel cells (SOFCs) or gases sensors. Impedance spectroscopy at 550-800 °C shows that conductivity is higher at higher temperature. Sm 0.5 Zr 0.5 Fe 0.5 Mg 0.5 O 3 shows the highest conductivity of 5.451 × 10 -3 S cm -1 at 800 °C. It was observed that 50% molar ratio of Mg and Zr doping performed highest conductivity.
  •  
7.
  • Afif, A., et al. (author)
  • Ceramic fuel cells using novel proton-conducting BaCe 0.5 Zr 0.3 Y 0.1 Yb 0.05 Zn 0.05 O 3-δ electrolyte
  • 2022
  • In: Journal of Solid State Electrochemistry. - : Springer Science and Business Media LLC. - 1433-0768 .- 1432-8488. ; 1:26, s. 111-120
  • Journal article (peer-reviewed)abstract
    • Protonic ceramic fuel cells have become extremely interesting due to their high power output at the intermediate temperature range (400–700 °C). Significant progress has been made to develop electrolyte materials, doped barium cerates-zirconate, which gets the leading role due to its high chemical stability and high ionic conductivity. Here, we present a new composition BaCe0.5Zr0.3Y0.1Yb0.05Zn0.05O3-δ (BCZYYbZn05), where addition of 5 mol% Zn with Ce, Zr, Y, and Yb at the B-site of the perovskite material shows high stability with high conductivity. The material was synthesized by solid-state reaction route at 1400 °C which showed 98% relative density. Rietveld analysis of neutron powder diffraction data reveal an orthorhombic structure with Pbnm space group. Thermogravimetric analysis shows about 1.06% weight loss from 200 to 1000 °C which is mainly related to the formation of the oxygen vacancies. In wet hydrogen atmosphere, this material shows higher conductivity and lower activation energy than dry hydrogen atmosphere indicates the conduction type as protonic conduction. The anode-supported single test cell based on this electrolyte material demonstrates peak power densities 649 mW cm−2 at 700 °C using conventional BSCF cathode, representing an important step toward commercially viable SOFC technology.
  •  
8.
  • Afif, A., et al. (author)
  • Electrochemical and structural characterization of BaCe 0.7 Zr 0.15 Y 0.1 Zn 0.05 O 3-δ as an electrolyte for SOFC-H
  • 2018
  • In: IET Conference Publications. ; 2018:CP750
  • Conference paper (peer-reviewed)abstract
    • As a potential electrolyte for proton-conducting solid oxide fuel cells (SOFC-Hs) and to get better protonic conductivity and stability, zinc doped BCZY material has been found to be promising. In this study, we report a new composition of proton conductors BaCe0.7Zr0.15Y01Zn0.05O3-s (BCZYZn10) which was investigated using XRD, SEM and conductivity measurements. Rietveld refinement of the XRD data revel a cubic perovskite structure with Pm-3m space group. Rietveld analysis of BaCe07Zr0.15Y01Zn0.05O3-5 shows the unit cell parameter is a = 4.3582(7) A. Scanning electron microscopy images shows that the grain sizes are large and compact which gives the sample high density and good protonic conductivity. The total conductivity in wet atmosphere is significantly higher than that of dry condition and the conductivity was found to be 0.004032 Scm-1 and 0.00164 Scm-1 at 600 °C in wet and dry Ar, respectively. This study indicated that perovskite electrolyte BCZYZn10 is a promising material for the next generation intermediate temperature solid oxide fuel cells (IT-SOFCs).
  •  
9.
  • Afif, A., et al. (author)
  • Structural and electrochemical characterization of BaCe0.7Zr0.2Y0.05Zn0.05O3 as an electrolyte for SOFC-H
  • 2016
  • In: IOP Conference Series: Materials Science and Engineering. - 1757-8981 .- 1757-899X. ; 121:1
  • Conference paper (peer-reviewed)abstract
    • As a potential electrolyte for proton-conducting solid oxide fuel cells (SOFC-Hs) and to get better protonic conductivity and stability, zinc doped BCZY material has been found to be promising. In this study, we report a new composition of proton conductors BaCe0.7Zr0.2Y0.05Zn0.05O3 (BCZYZn5) which was investigated using XRD, SEM and conductivity measurements. Rietveld refinement of the XRD data revel a cubic perovskite structure with Pm-3m space group. BaCe0.7Zr0.2Y0.05Zn0.05O3 shows cell parameter a = 4.3452(9) Å. Scanning electron microscopy images shows that the grain sizes are large and compact which gives the sample high density and good protonic conductivity. The total conductivity in wet atmosphere is significantly higher than that of dry condition and the conductivity was found to be 0.276 × 10-3 Scm-1 and 0.204 × 10-3 Scm-1 at 600°C in wet and dry Ar, respectively. This study indicated that perovskite electrolyte BCZYZn5 is a promising material for the next generation intermediate temperature solid oxide fuel cells (IT-SOFCs).
  •  
10.
  • Dobsicek Trefna, Hana, 1979, et al. (author)
  • Quality assurance guidelines for superficial hyperthermia clinical trials: I. Clinical requirements
  • 2017
  • In: International Journal of Hyperthermia. - : Informa UK Limited. - 0265-6736 .- 1464-5157. ; 33:4, s. 471-482
  • Journal article (peer-reviewed)abstract
    • Quality assurance guidelines are essential to provide uniform execution of clinical trials and treatment in the application of hyperthermia. This document provides definitions for a good hyperthermia treatment and identifies the clinical conditions where a certain hyperthermia system can or cannot adequately heat the tumour volume. It also provides brief description of the characteristics and performance of the current electromagnetic (radiative and capacitive), ultrasound and infra-red heating techniques. This information helps to select the appropriate heating technique for the specific tumour location and size, and appropriate settings of the water bolus and thermometry. Finally, requirements of staff training and documentation are provided. The guidelines in this document focus on the clinical application and are complemented with a second, more technical quality assurance document providing instructions and procedure to determine essential parameters that describe heating properties of the applicator for superficial hyperthermia. Both sets of guidelines were developed by the ESHO Technical Committee with participation of senior STM members and members of the Atzelsberg Circle.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view