Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rainey Paul Professor) "

Sökning: WFRF:(Rainey Paul Professor)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
  • Zorzet, Anna, 1977- (författare)
  • Mechanisms of Adaptation to Deformylase Inhibitors
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt)abstract
    • Antibiotic resistance is a growing problem on a global scale. Increasing numbers of bacteria resistant toward one or multiple antibiotics could return us to the high mortality rates for infectious diseases of the pre-antibiotic era. The need for development of new classes of antibiotics is great as is increased understanding of the mechanisms underlying the development of antibiotic resistance. We have investigated the emergence of resistance to peptide deformylase inhibitors, a new class of antibiotics that target bacterial protein synthesis. The fitness of resistant mutants as well as their propensity to acquire secondary compensatory mutations was assessed in order to gain some insight into the potential clinical risk of resistance development. Most of this work was done in the bacterium Salmonella typhimurium, due to the availability of excellent genetic tools to study these phenomena. In addition, we have studied the bacterium Staphylococcus aureus as peptide deformylase inhibitors have been shown to have the greatest effect on Gram-positive organisms. In the course of this work we also examined the mechanistic aspects of translation initiation. Using a cell-free in vitro translation system we studied the effects of various components on translation initiation. These results have been combined with results obtained from resistant and compensated bacterial strains in vivo to gain new insights into the mechanisms of translation initiation.
  • Abdalaal, Hind (författare)
  • Deciphering molecular mechanisms in the evolution of new functions
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt)abstract
    • The evolution of new genes and functions is considered to be a major contributor to biological diversity in organisms. Through de novo origination, “duplication and divergence”, and horizontal gene transfer, organisms can acquire new genetic material that can evolve to perform novel functions. In this thesis, we investigate how functional trade-offs, “gene duplication and amplification”, and neutral divergence contribute to the emergence of a new function from a preexisting gene. In Paper i, we investigated the ability of Salmonella enterica to compensate for the loss of peptide release factor 1 (RFI) and the potential of peptide release factor 2 (RF2) to gain a new function to replace RFI. The amplification of RF2 and accumulated mutations within RF2 were the main evolutionary routes by which the fitness cost was restored. However, further characterization of the evolved RF2 showed a toxic effect to the cell due to the termination on tryptophan codon (UGG). This evolutionary trade-off - which we named “collateral toxicity” - might present a serious barrier for evolving an efficient RF2 to replace RF1.In Paper ii, we determined whether we could evolve a generalist enzyme with two functions (HisA + TrpF) from the specialist enzyme HisA, which can only synthesize histidine. In a previous study, we showed that HisA evolved a TrpF activity through strong trade-off trajectories. Here, we developed a selection scheme in which we constantly selected for keeping the original function (HisA), while intermittently selecting for the new function (TrpF). Our results showed that all evolved lineages shared the same “stepping stone” mutations in the hisA gene, which enabled them to grow well in the absence of both histidine and tryptophan. Additional accumulated mutations in the hisA gene gave the strains an increased ability to grow without both amino acids, indicating that the HisA enzyme evolved to be an efficient generalist.  In Paper iii, we explored how differences between diverged orthologs influence evolvability. We generated artificial orthologs using a random mutagenesis approach. First, we screened for orthologs with a lower HisA activity and then selected for orthologs with a higher HisA activity; these steps were repeated in alternating rounds. We then tested the ability of each ortholog to evolve  TrpF activity. As expected, the orthologs showed varying abilities to evolve the new function. In particular, orthologs with higher HisA activity levels showed both a higher potential to evolve the new function and a higher TrpF activity when they acquired the new function. 
  • Wäneskog, Marcus (författare)
  • Too close for comfort : The role of Contact-Dependent growth Inhibition (CDI) in interbacterial competition and cooperation
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt)abstract
    • Contact-Dependent growth inhibition (CDI) was discovered in 2005 in the E. coli isolate EC93. Since then our knowledge of CDI systems and their impact on bacterial communities have increased exponentially. Yet many biological aspects of CDI systems are still unknown and their impact on complex microbial communities have only just begun to be studied. CDI systems require the function of three proteins; CdiBAI. The outer-membrane transport protein, CdiB, allows for the transportation of the toxin delivery protein CdiA to the cell surface of an inhibitor cell. Through a contact- and receptor-dependent interaction with a target cell the toxic C-terminal domain of CdiA is cleaved off and delivered into the target cell were it mediates a growth arrest. Different CdiA-CT domains encodes for diverse toxic activities, such as nucleases and membrane ionophore toxins. Each unique CdiA-CT toxin has a cognate immunity protein (CdiI) that binds and neutralize against its toxic activity, thus preventing a possible self-inhibition.In this thesis I have studied the effect of CDI system(s) on both single cell and population level, within both intra- and interspecies bacterial communities. The findings presented here shows that multiple class I cdiBAI loci within a cell can function in a synergetic manner and act as versatile interbacterial warfare systems able to inhibit the growth of rival bacteria, even when CdiA expression is low. We also show that class II CdiA receptor-binding domains can mediate broad-range cross-species toxin delivery and growth inhibition, even when a non-optimal target cell receptor is expressed at a low level. Additionally, we show that the cdiA gene supports the expression of two separate proteins. The full-length CdiA protein, able to mediate an extracellular toxin delivery, but also the discrete CdiA-CT toxin domain. This stand-alone CdiA-CT expression was stress-dependent and together with its cognate CdiI immunity protein functioned as a selfish-genetic element. Moreover, we show that CDI systems can increase bacterial stress tolerance via an extracellular toxin delivery between kin-cells. This stress tolerance phenotype only occurred under conditions when we also observed a selective degradation of the CdiI immunity protein. Therefore, we suggest that a selective CdiI degradation allows for a sub-population of cells to self-intoxicate, thereby becoming transiently dormant, which confers an increase in stress tolerance. The findings presented in this thesis collectively suggest that CDI systems could function as a pseudo-quorum sensing system able to mediate behavioral changes and stress tolerance within a sub-population of cells in a bacterial community.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy