SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ramachandran D) ;pers:(Melander Olle)"

Sökning: WFRF:(Ramachandran D) > Melander Olle

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Surendran, Praveen, et al. (författare)
  • Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals
  • 2020
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 52:12, s. 1314-1332
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to similar to 1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency <= 0.01) variant BP associations (P < 5 x 10(-8)), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were similar to 8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
  •  
2.
  • Furberg, Helena, et al. (författare)
  • Genome-wide meta-analyses identify multiple loci associated with smoking behavior
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 42:5, s. 134-441
  • Tidskriftsartikel (refereegranskat)abstract
    • Consistent but indirect evidence has implicated genetic factors in smoking behavior1,2. We report meta-analyses of several smoking phenotypes within cohorts of the Tobacco and Genetics Consortium (n = 74,053). We also partnered with the European Network of Genetic and Genomic Epidemiology (ENGAGE) and Oxford-GlaxoSmithKline (Ox-GSK) consortia to follow up the 15 most significant regions (n > 140,000). We identified three loci associated with number of cigarettes smoked per day. The strongest association was a synonymous 15q25 SNP in the nicotinic receptor gene CHRNA3 (rs1051730[A], b = 1.03, standard error (s.e.) = 0.053, beta = 2.8 x 10(-73)). Two 10q25 SNPs (rs1329650[G], b = 0.367, s. e. = 0.059, beta = 5.7 x 10(-10); and rs1028936[A], b = 0.446, s. e. = 0.074, beta = 1.3 x 10(-9)) and one 9q13 SNP in EGLN2 (rs3733829[G], b = 0.333, s. e. = 0.058, P = 1.0 x 10(-8)) also exceeded genome-wide significance for cigarettes per day. For smoking initiation, eight SNPs exceeded genome-wide significance, with the strongest association at a nonsynonymous SNP in BDNF on chromosome 11 (rs6265[C], odds ratio (OR) = 1.06, 95% confidence interval (Cl) 1.04-1.08, P = 1.8 x 10(-8)). One SNP located near DBH on chromosome 9 (rs3025343[G], OR = 1.12, 95% Cl 1.08-1.18, P = 3.6 x 10(-8)) was significantly associated with smoking cessation.
  •  
3.
  • Mosley, Jonathan D., et al. (författare)
  • Probing the Virtual Proteome to Identify Novel Disease Biomarkers
  • 2018
  • Ingår i: Circulation. - 1524-4539. ; 138:22, s. 2469-2481
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Proteomic approaches allow measurement of thousands of proteins in a single specimen, which can accelerate biomarker discovery. However, applying these technologies to massive biobanks is not currently feasible because of the practical barriers and costs of implementing such assays at scale. To overcome these challenges, we used a "virtual proteomic" approach, linking genetically predicted protein levels to clinical diagnoses in >40 000 individuals. METHODS: We used genome-wide association data from the Framingham Heart Study (n=759) to construct genetic predictors for 1129 plasma protein levels. We validated the genetic predictors for 268 proteins and used them to compute predicted protein levels in 41 288 genotyped individuals in the Electronic Medical Records and Genomics (eMERGE) cohort. We tested associations for each predicted protein with 1128 clinical phenotypes. Lead associations were validated with directly measured protein levels and either low-density lipoprotein cholesterol or subclinical atherosclerosis in the MDCS (Malmö Diet and Cancer Study; n=651). RESULTS: In the virtual proteomic analysis in eMERGE, 55 proteins were associated with 89 distinct diagnoses at a false discovery rate q<0.1. Among these, 13 associations involved lipid (n=7) or atherosclerosis (n=6) phenotypes. We tested each association for validation in MDCS using directly measured protein levels. At Bonferroni-adjusted significance thresholds, levels of apolipoprotein E isoforms were associated with hyperlipidemia, and circulating C-type lectin domain family 1 member B and platelet-derived growth factor receptor-β predicted subclinical atherosclerosis. Odds ratios for carotid atherosclerosis were 1.31 (95% CI, 1.08-1.58; P=0.006) per 1-SD increment in C-type lectin domain family 1 member B and 0.79 (0.66-0.94; P=0.008) per 1-SD increment in platelet-derived growth factor receptor-β. CONCLUSIONS: We demonstrate a biomarker discovery paradigm to identify candidate biomarkers of cardiovascular and other diseases.
  •  
4.
  • Ganesh, Santhi K., et al. (författare)
  • Loci influencing blood pressure identified using a cardiovascular gene-centric array
  • 2013
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 22:8, s. 1663-1678
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood pressure (BP) is a heritable determinant of risk for cardiovascular disease (CVD). To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP) and pulse pressure (PP), we genotyped 50 000 single-nucleotide polymorphisms (SNPs) that capture variation in 2100 candidate genes for cardiovascular phenotypes in 61 619 individuals of European ancestry from cohort studies in the USA and Europe. We identified novel associations between rs347591 and SBP (chromosome 3p25.3, in an intron of HRH1) and between rs2169137 and DBP (chromosome1q32.1 in an intron of MDM4) and between rs2014408 and SBP (chromosome 11p15 in an intron of SOX6), previously reported to be associated with MAP. We also confirmed 10 previously known loci associated with SBP, DBP, MAP or PP (ADRB1, ATP2B1, SH2B3/ATXN2, CSK, CYP17A1, FURIN, HFE, LSP1, MTHFR, SOX6) at array-wide significance (P 2.4 10(6)). We then replicated these associations in an independent set of 65 886 individuals of European ancestry. The findings from expression QTL (eQTL) analysis showed associations of SNPs in the MDM4 region with MDM4 expression. We did not find any evidence of association of the two novel SNPs in MDM4 and HRH1 with sequelae of high BP including coronary artery disease (CAD), left ventricular hypertrophy (LVH) or stroke. In summary, we identified two novel loci associated with BP and confirmed multiple previously reported associations. Our findings extend our understanding of genes involved in BP regulation, some of which may eventually provide new targets for therapeutic intervention.
  •  
5.
  • Ngo, Debby, et al. (författare)
  • Proteomic profiling reveals novel biomarkers and pathways in yype 2 diabetes risk
  • 2021
  • Ingår i: JCI Insight. - : American Society for Clinical Investigation. - 2379-3708. ; 6:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent advances in proteomic technologies have made high throughput profiling of low abundance proteins in large epidemiological cohorts increasingly feasible. We investigated whether aptamer-based proteomic profiling could identify biomarkers associated with future development of type 2 diabetes (T2DM) beyond known risk factors. We identified dozens of markers with highly significant associations with future T2DM across two large longitudinal cohorts (n=2,839) followed for up to 16 years. We leveraged proteomic, metabolomic, genetic and clinical data from humans to nominate one specific candidate to test for potential causal relationships in model systems. Our studies identified functional effects of aminoacylase 1 (ACY1), a top protein association with future T2DM risk, on amino acid metabolism and insulin homeostasis in vitro and in vivo. Further, a loss-of-function variant associated with circulating levels of the biomarker WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 2 (WFIKKN2) was in turn associated with fasting glucose, hemoglobin A1c and HOMA-IR measurements in humans. In addition to identifying novel disease markers and potential pathways in T2DM, we provide publicly available data to be leveraged for new insights about gene function and disease pathogenesis in the context of human metabolism. .
  •  
6.
  • Surendran, Praveen, et al. (författare)
  • Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension
  • 2016
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 48:10, s. 1151-1161
  • Tidskriftsartikel (refereegranskat)abstract
    • High blood pressure is a major risk factor for cardiovascular disease and premature death. However, there is limited knowledge on specific causal genes and pathways. To better understand the genetics of blood pressure, we genotyped 242,296 rare, low-frequency and common genetic variants in up to 192,763 individuals and used -1/4155,063 samples for independent replication. We identified 30 new blood pressure- or hypertension-associated genetic regions in the general population, including 3 rare missense variants in RBM47, COL21A1 and RRAS with larger effects (>1.5 mm Hg/allele) than common variants. Multiple rare nonsense and missense variant associations were found in A2ML1, and a low-frequency nonsense variant in ENPEP was identified. Our data extend the spectrum of allelic variation underlying blood pressure traits and hypertension, provide new insights into the pathophysiology of hypertension and indicate new targets for clinical intervention.
  •  
7.
  • Tragante, Vinicius, et al. (författare)
  • Gene-centric Meta-analysis in 87,736 Individuals of European Ancestry Identifies Multiple Blood-Pressure-Related Loci.
  • 2014
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 94:3, s. 349-360
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood pressure (BP) is a heritable risk factor for cardiovascular disease. To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP), we genotyped ∼50,000 SNPs in up to 87,736 individuals of European ancestry and combined these in a meta-analysis. We replicated findings in an independent set of 68,368 individuals of European ancestry. Our analyses identified 11 previously undescribed associations in independent loci containing 31 genes including PDE1A, HLA-DQB1, CDK6, PRKAG2, VCL, H19, NUCB2, RELA, HOXC@ complex, FBN1, and NFAT5 at the Bonferroni-corrected array-wide significance threshold (p < 6 × 10(-7)) and confirmed 27 previously reported associations. Bioinformatic analysis of the 11 loci provided support for a putative role in hypertension of several genes, such as CDK6 and NUCB2. Analysis of potential pharmacological targets in databases of small molecules showed that ten of the genes are predicted to be a target for small molecules. In summary, we identified previously unknown loci associated with BP. Our findings extend our understanding of genes involved in BP regulation, which may provide new targets for therapeutic intervention or drug response stratification.
  •  
8.
  • Cheng, Susan, et al. (författare)
  • Metabolite Profiling Identifies Pathways Associated With Metabolic Risk in Humans
  • 2012
  • Ingår i: Circulation. - 1524-4539. ; 125:18, s. 132-2222
  • Tidskriftsartikel (refereegranskat)abstract
    • Background-Although metabolic risk factors are known to cluster in individuals who are prone to developing diabetes mellitus and cardiovascular disease, the underlying biological mechanisms remain poorly understood. Methods and Results-To identify pathways associated with cardiometabolic risk, we used liquid chromatography/mass spectrometry to determine the plasma concentrations of 45 distinct metabolites and to examine their relation to cardiometabolic risk in the Framingham Heart Study (FHS; n=1015) and the Malmo Diet and Cancer Study (MDC; n=746). We then interrogated significant findings in experimental models of cardiovascular and metabolic disease. We observed that metabolic risk factors (obesity, insulin resistance, high blood pressure, and dyslipidemia) were associated with multiple metabolites, including branched-chain amino acids, other hydrophobic amino acids, tryptophan breakdown products, and nucleotide metabolites. We observed strong associations of insulin resistance traits with glutamine (standardized regression coefficients, -0.04 to -0.22 per 1-SD change in log-glutamine; P<0.001), glutamate (0.05 to 0.14; P<0.001), and the glutamine-toglutamate ratio (-0.05 to -0.20; P<0.001) in the discovery sample (FHS); similar associations were observed in the replication sample (MDC). High glutamine-to-glutamate ratio was associated with lower risk of incident diabetes mellitus in FHS (odds ratio, 0.79; adjusted P=0.03) but not in MDC. In experimental models, administration of glutamine in mice led to both increased glucose tolerance (P=0.01) and decreased blood pressure (P=0.05). Conclusions-Biochemical profiling identified circulating metabolites not previously associated with metabolic traits. Experimentally interrogating one of these pathways demonstrated that excess glutamine relative to glutamate, resulting from exogenous administration, is associated with reduced metabolic risk in mice. (Circulation. 2012;125:2222-2231.)
  •  
9.
  • Brunner, Fabian J., et al. (författare)
  • Application of non-HDL cholesterol for population-based cardiovascular risk stratification : results from the Multinational Cardiovascular Risk Consortium
  • 2019
  • Ingår i: The Lancet. - : Elsevier. - 0140-6736 .- 1474-547X. ; 394:10215, s. 2173-2183
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The relevance of blood lipid concentrations to long-term incidence of cardiovascular disease and the relevance of lipid-lowering therapy for cardiovascular disease outcomes is unclear. We investigated the cardiovascular disease risk associated with the full spectrum of bloodstream non-HDL cholesterol concentrations. We also created an easy-to-use tool to estimate the long-term probabilities for a cardiovascular disease event associated with non-HDL cholesterol and modelled its risk reduction by lipid-lowering treatment.Methods: In this risk-evaluation and risk-modelling study, we used Multinational Cardiovascular Risk Consortium data from 19 countries across Europe, Australia, and North America. Individuals without prevalent cardiovascular disease at baseline and with robust available data on cardiovascular disease outcomes were included. The primary composite endpoint of atherosclerotic cardiovascular disease was defined as the occurrence of the coronary heart disease event or ischaemic stroke. Sex-specific multivariable analyses were computed using non-HDL cholesterol categories according to the European guideline thresholds, adjusted for age, sex, cohort, and classical modifiable cardiovascular risk factors. In a derivation and validation design, we created a tool to estimate the probabilities of a cardiovascular disease event by the age of 75 years, dependent on age, sex, and risk factors, and the associated modelled risk reduction, assuming a 50% reduction of non-HDL cholesterol.Findings: Of the 524 444 individuals in the 44 cohorts in the Consortium database, we identified 398 846 individuals belonging to 38 cohorts (184 055 [48·7%] women; median age 51·0 years [IQR 40·7–59·7]). 199 415 individuals were included in the derivation cohort (91 786 [48·4%] women) and 199 431 (92 269 [49·1%] women) in the validation cohort. During a maximum follow-up of 43·6 years (median 13·5 years, IQR 7·0–20·1), 54 542 cardiovascular endpoints occurred. Incidence curve analyses showed progressively higher 30-year cardiovascular disease event-rates for increasing non-HDL cholesterol categories (from 7·7% for non-HDL cholesterol <2·6 mmol/L to 33·7% for ≥5·7 mmol/L in women and from 12·8% to 43·6% in men; p<0·0001). Multivariable adjusted Cox models with non-HDL cholesterol lower than 2·6 mmol/L as reference showed an increase in the association between non-HDL cholesterol concentration and cardiovascular disease for both sexes (from hazard ratio 1·1, 95% CI 1·0–1·3 for non-HDL cholesterol 2·6 to <3·7 mmol/L to 1·9, 1·6–2·2 for ≥5·7 mmol/L in women and from 1·1, 1·0–1·3 to 2·3, 2·0–2·5 in men). The derived tool allowed the estimation of cardiovascular disease event probabilities specific for non-HDL cholesterol with high comparability between the derivation and validation cohorts as reflected by smooth calibration curves analyses and a root mean square error lower than 1% for the estimated probabilities of cardiovascular disease. A 50% reduction of non-HDL cholesterol concentrations was associated with reduced risk of a cardiovascular disease event by the age of 75 years, and this risk reduction was greater the earlier cholesterol concentrations were reduced.Interpretation: Non-HDL cholesterol concentrations in blood are strongly associated with long-term risk of atherosclerotic cardiovascular disease. We provide a simple tool for individual long-term risk assessment and the potential benefit of early lipid-lowering intervention. These data could be useful for physician–patient communication about primary prevention strategies.
  •  
10.
  • Khan, Abigail May, et al. (författare)
  • Cardiac Natriuretic Peptides, Obesity, and Insulin Resistance: Evidence from Two Community-Based Studies.
  • 2011
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 96:10, s. 3242-3249
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The natriuretic peptides play an important role in salt homeostasis and blood pressure regulation. It has been suggested that obesity promotes a relative natriuretic peptide deficiency, but this has been a variable finding in prior studies and the cause is unknown. Aim: The aim of this study was to examine the association between obesity and natriuretic peptide levels and evaluate the role of hyperinsulinemia and testosterone as mediators of this interaction. Methods: We studied 7770 individuals from the Framingham Heart Study (n = 3833, 54% women) and the Malmö Diet and Cancer study (n = 3918, 60% women). We examined the relation of plasma N-terminal pro-B-type natriuretic peptide levels (N-BNP) with obesity, insulin resistance, and various metabolic subtypes. Results: Obesity was associated with 6-20% lower levels of N-BNP (P < 0.001 in Framingham, P = 0.001 in Malmö), whereas insulin resistance was associated with 10-30% lower levels of N-BNP (P < 0.001 in both cohorts). Individuals with obesity who were insulin sensitive had only modest reductions in N-BNP compared with nonobese, insulin-sensitive individuals. On the other hand, individuals who were nonobese but insulin resistant had 26% lower N-BNP in Framingham (P < 0.001) and 10% lower N-BNP in Malmö (P < 0.001), compared with nonobese and insulin-sensitive individuals. Adjustment for serum-free testosterone did not alter these associations. Conclusions: In both nonobese and obese individuals, insulin resistance is associated with lower natriuretic peptide levels. The relative natriuretic peptide deficiency seen in obesity could be partly attributable to insulin resistance, and could be one mechanism by which insulin resistance promotes hypertension.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy