SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rasmussen Simon) srt2:(2020-2022);lar1:(ki)"

Search: WFRF:(Rasmussen Simon) > (2020-2022) > Karolinska Institutet

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Yildiz, B, et al. (author)
  • Live well, die well - an international cohort study on experiences, concerns and preferences of patients in the last phase of life: the research protocol of the iLIVE study
  • 2022
  • In: BMJ OPEN. - : BMJ. - 2044-6055. ; 12:8
  • Journal article (other academic/artistic)abstract
    • Adequately addressing the needs of patients at the end of life and their relatives is pivotal in preventing unnecessary suffering and optimising their quality of life. The purpose of the iLIVE study is to contribute to high-quality personalised care at the end of life in different countries and cultures, by investigating the experiences, concerns, preferences and use of care of terminally ill patients and their families.Methods and analysisThe iLIVE study is an international cohort study in which patients with an estimated life expectancy of 6 months or less are followed up until they die. In total, 2200 patients will be included in 11 countries, that is, 200 per country. In addition, one relative per patient is invited to participate. All participants will be asked to fill in a questionnaire, at baseline and after 4 weeks. If a patient dies within 6 months of follow-up, the relative will be asked to fill in a post-bereavement questionnaire. Healthcare use in the last week of life will be evaluated as well; healthcare staff who attended the patient will be asked to fill in a brief questionnaire to evaluate the care that was provided. Qualitative interviews will be conducted with patients, relatives and healthcare professionals in all countries to gain more in-depth insights.Ethics and disseminationThe cohort study has been approved by ethics committees and the institutional review boards (IRBs) of participating institutes in all countries. Results will be disseminated through the project website, publications in scientific journals and at conferences. Within the project, there will be a working group focusing on enhancing the engagement of the community at large with the reality of death and dying.Trial registration numberNCT04271085.
  •  
2.
  • Gopalakrishnan, Shyam, et al. (author)
  • The population genomic legacy of the second plague pandemic
  • 2022
  • In: Current Biology. - : Elsevier. - 0960-9822 .- 1879-0445. ; 32:21, s. 4743-4751.e6
  • Journal article (peer-reviewed)abstract
    • Human populations have been shaped by catastrophes that may have left long-lasting signatures in their genomes. One notable example is the second plague pandemic that entered Europe in ca. 1,347 CE and repeatedly returned for over 300 years, with typical village and town mortality estimated at 10%–40%.1 It is assumed that this high mortality affected the gene pools of these populations. First, local population crashes reduced genetic diversity. Second, a change in frequency is expected for sequence variants that may have affected survival or susceptibility to the etiologic agent (Yersinia pestis).2 Third, mass mortality might alter the local gene pools through its impact on subsequent migration patterns. We explored these factors using the Norwegian city of Trondheim as a model, by sequencing 54 genomes spanning three time periods: (1) prior to the plague striking Trondheim in 1,349 CE, (2) the 17th–19th century, and (3) the present. We find that the pandemic period shaped the gene pool by reducing long distance immigration, in particular from the British Isles, and inducing a bottleneck that reduced genetic diversity. Although we also observe an excess of large FST values at multiple loci in the genome, these are shaped by reference biases introduced by mapping our relatively low genome coverage degraded DNA to the reference genome. This implies that attempts to detect selection using ancient DNA (aDNA) datasets that vary by read length and depth of sequencing coverage may be particularly challenging until methods have been developed to account for the impact of differential reference bias on test statistics.
  •  
3.
  • Lind, Lars, et al. (author)
  • Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight NCD Risk Factor Collaboration (NCD-RisC)
  • 2021
  • In: eLife. - : eLife Sciences Publications Ltd. - 2050-084X. ; 10
  • Journal article (peer-reviewed)abstract
    • From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions.
  •  
4.
  •  
5.
  • Shi, Liu, et al. (author)
  • Dickkopf-1 Overexpression in vitro Nominates Candidate Blood Biomarkers Relating to Alzheimer's Disease Pathology.
  • 2020
  • In: Journal of Alzheimer's disease : JAD. - : IOS Press. - 1875-8908 .- 1387-2877. ; 77:3, s. 1353-1368
  • Journal article (peer-reviewed)abstract
    • Previous studies suggest that Dickkopf-1 (DKK1), an inhibitor of Wnt signaling, plays a role in amyloid-induced toxicity and hence Alzheimer's disease (AD). However, the effect of DKK1 expression on protein expression, and whether such proteins are altered in disease, is unknown.We aim to test whether DKK1 induced protein signature obtained in vitro were associated with markers of AD pathology as used in the amyloid/tau/neurodegeneration (ATN) framework as well as with clinical outcomes.We first overexpressed DKK1 in HEK293A cells and quantified 1,128 proteins in cell lysates using aptamer capture arrays (SomaScan) to obtain a protein signature induced by DKK1. We then used the same assay to measure the DKK1-signature proteins in human plasma in two large cohorts, EMIF (n = 785) and ANM (n = 677).We identified a 100-protein signature induced by DKK1 in vitro. Subsets of proteins, along with age and apolipoprotein E ɛ4 genotype distinguished amyloid pathology (A + T-N-, A+T+N-, A+T-N+, and A+T+N+) from no AD pathology (A-T-N-) with an area under the curve of 0.72, 0.81, 0.88, and 0.85, respectively. Furthermore, we found that some signature proteins (e.g., Complement C3 and albumin) were associated with cognitive score and AD diagnosis in both cohorts.Our results add further evidence for a role of DKK regulation of Wnt signaling in AD and suggest that DKK1 induced signature proteins obtained in vitro could reflect theATNframework as well as predict disease severity and progression in vivo.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view