SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Reinvang Ivar) "

Sökning: WFRF:(Reinvang Ivar)

  • Resultat 1-10 av 13
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Athanasiu, L., et al. (författare)
  • A genetic association study of CSMD1 and CSMD2 with cognitive function
  • 2017
  • Ingår i: Brain Behavior and Immunity. - 0889-1591 .- 1090-2139. ; 61, s. 209-216
  • Tidskriftsartikel (refereegranskat)abstract
    • The complement cascade plays a role in synaptic pruning and synaptic plasticity, which seem to be involved in cognitive functions and psychiatric disorders. Genetic variants in the closely related CSMD1 and CSMD2 genes, which are implicated in complement regulation, are associated with schizophrenia. Since patients with schizophrenia often show cognitive impairments, we tested whether variants in CSMD1 and CSMD2 are also associated with cognitive functions per se. We took a discovery-replication approach, using well-characterized Scandinavian cohorts. A total of 1637 SNPs in CSMD1 and 206 SNPs in CSMD2 were tested for association with cognitive functions in the NCNG sample (Norwegian Cognitive NeuroGenetics; n = 670). Replication testing of SNPs with p-value < 0.001 (7 in CSMD1 and 3 in CSMD2) was carried out in the TOP sample (Thematically Organized Psychosis; n =1025) and the BETULA sample (Betula Longitudinal Study on aging, memory and dementia; n = 1742). Finally, we conducted a meta-analysis of these SNPs using all three samples. The previously identified schizophrenia marker in CSMD1 (SNP rs10503253) was also included. The strongest association was observed between the CSMDI SNP rs2740931 and performance in immediate episodic memory (p-value = 5 Chi 10(-6), minor allele A, MAF 0.48-0.49, negative direction of effect). This association reached the study-wide significance level (p <= 1.2 Chi 10(-5)). SNP rs10503253 was not significantly associated with cognitive functions in our samples. In conclusion, we studied n = 3437 individuals and found evidence that a variant in CSMD1 is associated with cognitive function. Additional studies of larger samples with cognitive phenotypes will be needed to further clarify the role of CSMD1 in cognitive phenotypes in health and disease. (C) 2016 The Authors. Published by Elsevier Inc.
  •  
2.
  • Davies, G., et al. (författare)
  • Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function
  • 2018
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723 .- 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • General cognitive function is a prominent and relatively stable human trait that is associated with many important life outcomes. We combine cognitive and genetic data from the CHARGE and COGENT consortia, and UK Biobank (total N = 300,486; age 16-102) and find 148 genome-wide significant independent loci (P < 5 × 10-8) associated with general cognitive function. Within the novel genetic loci are variants associated with neurodegenerative and neurodevelopmental disorders, physical and psychiatric illnesses, and brain structure. Gene-based analyses find 709 genes associated with general cognitive function. Expression levels across the cortex are associated with general cognitive function. Using polygenic scores, up to 4.3% of variance in general cognitive function is predicted in independent samples. We detect significant genetic overlap between general cognitive function, reaction time, and many health variables including eyesight, hypertension, and longevity. In conclusion we identify novel genetic loci and pathways contributing to the heritability of general cognitive function.
  •  
3.
  • Giddaluru, Sudheer, et al. (författare)
  • Genetics of structural connectivity and information processing in the brain
  • 2016
  • Ingår i: Brain Structure and Function. - 1863-2653 .- 1863-2661. ; 221:9, s. 4643-4661
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the genetic factors underlying brain structural connectivity is a major challenge in imaging genetics. Here, we present results from genome-wide association studies (GWASs) of whole-brain white matter (WM) fractional anisotropy (FA), an index of microstructural coherence measured using diffusion tensor imaging. Data from independent GWASs of 355 Swedish and 250 Norwegian healthy adults were integrated by meta-analysis to enhance power. Complementary GWASs on behavioral data reflecting processing speed, which is related to microstructural properties of WM pathways, were performed and integrated with WM FA results via multimodal analysis to identify shared genetic associations. One locus on chromosome 17 (rs145994492) showed genome-wide significant association with WM FA (meta P value = 1.87 × 10(-08)). Suggestive associations (Meta P value <1 × 10(-06)) were observed for 12 loci, including one containing ZFPM2 (lowest meta P value = 7.44 × 10(-08)). This locus was also implicated in multimodal analysis of WM FA and processing speed (lowest Fisher P value = 8.56 × 10(-07)). ZFPM2 is relevant in specification of corticothalamic neurons during brain development. Analysis of SNPs associated with processing speed revealed association with a locus that included SSPO (lowest meta P value = 4.37 × 10(-08)), which has been linked to commissural axon growth. An intergenic SNP (rs183854424) 14 kb downstream of CSMD1, which is implicated in schizophrenia, showed suggestive evidence of association in the WM FA meta-analysis (meta P value = 1.43 × 10(-07)) and the multimodal analysis (Fisher P value = 1 × 10(-07)). These findings provide novel data on the genetics of WM pathways and processing speed, and highlight a role of ZFPM2 and CSMD1 in information processing in the brain.
  •  
4.
  • Hibar, Derrek P., et al. (författare)
  • Common genetic variants influence human subcortical brain structures
  • 2015
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 520:7546, s. 224-U216
  • Tidskriftsartikel (refereegranskat)abstract
    • The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume(5) and intracranial volume(6). These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 X 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.
  •  
5.
  • Duarte Fernandes, Carla Patricia, et al. (författare)
  • Lack of association of the rs1344706 ZNF804A variant with cognitive functions and DTI indices of white matter microstructure in two independent healthy populations
  • 2014
  • Ingår i: Psychiatry Research. - : Elsevier. - 0925-4927 .- 1872-7506. ; 222:1-2, s. 60-66
  • Tidskriftsartikel (refereegranskat)abstract
    • The rs1344706 single nucleotide polymorphism with in intron 2 of the ZNF804A gene is strongly associated with schizophrenia and bipolar disorder. This variant has also been associated in some studies with a range of cognitive and neuro imaging phenotypes, but several studies have reported no effect on the same phenotypes in other samples. Here, we genotyped 670 healthy adult Norwegian subjects and 1753 healthy adult Swedish subjects for rs1344706, and tested for associations with cognitive phenotypes including general intellectual abilities, memory functions and cognitive inhibition. We also tested whether rs1344706 is associated with white matter microstructural properties using diffusion tensor imaging (DTI) data from 250 to 340 of the Norwegian and Swedish subjects, respectively. Whole-brain voxel-wise statistical modeling of the effect of the ZNF804A variant on two DTI indices, fractional anisotropy (FA) and radial diffusivity (RD), was performed using tract-based spatial statistics (TBSS), and commonly reported effect sizes were calculated within several large-scale white matter pathways based on neuroanatomic atlases. No significant associations were found between rs1344706 and the cognitive traits or white matter microstructure. We conclude that the rs1344706 SNP has no significant effect on these phenotypes in our two reasonably powered samples.
  •  
6.
  • Hessen, Erik, et al. (författare)
  • Subjective Cognitive Impairment Is a Predominantly Benign Condition in Memory Clinic Patients Followed for 6 Years: The Gothenburg-Oslo MCI Study.
  • 2017
  • Ingår i: Dementia and geriatric cognitive disorders extra. - 1664-5464. ; 7:1, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • In the quest for prevention or treatment, there is a need to find early markers for preclinical dementia. This study observed memory clinic patients with subjective cognitive impairment (SCI) and normal cognitive function at baseline. The primary aim was to address SCI as a potential risk factor for cognitive decline. The secondary aim was to address a potential relation between (1) baseline cerebrospinal fluid biomarkers and (2) a decline in memory performance over the first 2 years of follow-up, with a possible cognitive decline after 6 years.Eighty-one patients (mean age 61 years) were recruited from university memory clinics and followed up for 6 years.Eighty-six percent of the cohort remained cognitively stable or improved, 9% developed mild cognitive impairment, and only 5% (n = 4) developed dementia. Regression analysis revealed that low levels of Aβ42 at baseline and memory decline during the first 2 years predicted dementia. When combined, these variables were associated with a 50% risk of developing dementia.Cognitive stability for 86% of the cohort suggests that SCI is predominantly a benign condition with regard to neuropathology. The low number of individuals who developed dementia limits the generalizability of the results and discussion of progression factors.
  •  
7.
  • Myrum, Craig, et al. (författare)
  • Common variants in the ARC gene are not associated withcognitive abilities
  • 2015
  • Ingår i: Brain and Behavior. - : John Wiley & Sons. - 2162-3279 .- 2162-3279. ; 5:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: The Activity-Regulated Cytoskeleton-associated (ARC) gene encodes a protein that is critical for the consolidation of synaptic plasticity and long-term memory formation. Given ARC's key role in synaptic plasticity, we hypothesized that genetic variations in ARC may contribute to interindividual variability in human cognitive abilities or to attention-deficit hyperactivity disorder (ADHD) susceptibility, where cognitive impairment often accompanies the disorder. Methods: We tested whether ARC variants are associated with six measures of cognitive functioning in 670 healthy subjects in the Norwegian Cognitive NeuroGenetics (NCNG) by extracting data from its Genome-Wide Association Study (GWAS). In addition, the Swedish Betula sample of 1800 healthy subjects who underwent similar cognitive testing was also tested for association with 19 tag SNPs. Results: No ARC variants show association at the study-wide level, but several markers show a trend toward association with human cognitive functions. We also tested for association between ARCSNPs and ADHD in a Norwegian sample of cases and controls, but found no significant associations. Conclusion: This study suggests that common genetic variants located in ARC do not account for variance in human cognitive abilities, though small effects cannot be ruled out.
  •  
8.
  •  
9.
  •  
10.
  • Thorvaldsson, Valgeir, 1976, et al. (författare)
  • Memory in individuals with mild cognitive impairment in relation to APOE and CSF Abeta42.
  • 2010
  • Ingår i: International psychogeriatrics / IPA. - 1741-203X. ; 22:4, s. 598-606
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The epsilon4 allele of the apolipoprotein E (APOE) gene and low levels of cerebrospinal fluid (CSF) amyloid beta-proteins 42 (Abeta) have previously been associated with increased risk of cognitive decline in old age. In this study we examine the interaction of these markers with episodic memory in a sample identified as having mild cognitive impairment (MCI). METHODS: The sample (N = 149) was drawn from the Gothenburg MCI study and measured according to three free recall tests on three occasions spanning over four years. Second-order Latent Curve Models (LCM) were fitted to the data. RESULTS: Analyses accounting for age, gender, education, APOE, Abeta42, and interaction between APOE and Abeta42 revealed that the epsilon4 allele was significantly associated with level of memory performance in the presence of low Abeta42 values (< or = 452 ng/L). Associations between memory performance and Abeta42 were significant among the epsilon4 carriers but not among the non-carriers. The Abeta42 marker was, however, significantly associated with changes in memory over the study time period in the total sample. CONCLUSION: The findings support the hypothesis of an interactive effect of APOE and Abeta42 for memory decline in MCI patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
  • [1]2Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy