SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ribel Madsen Rasmus) srt2:(2010-2014);hsvcat:3"

Sökning: WFRF:(Ribel Madsen Rasmus) > (2010-2014) > Medicin och hälsovetenskap

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Flannick, Jason, et al. (författare)
  • Loss-of-function mutations in SLC30A8 protect against type 2 diabetes.
  • 2014
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 46:4, s. 357-357
  • Tidskriftsartikel (refereegranskat)abstract
    • Loss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of ∼150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8) and harbors a common variant (p.Trp325Arg) associated with T2D risk and glucose and proinsulin levels. Collectively, carriers of protein-truncating variants had 65% reduced T2D risk (P = 1.7 × 10(-6)), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34Serfs*50) demonstrated reduced glucose levels (-0.17 s.d., P = 4.6 × 10(-4)). The two most common protein-truncating variants (p.Arg138* and p.Lys34Serfs*50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested that reduced zinc transport increases T2D risk, and phenotypic heterogeneity was observed in mouse Slc30a8 knockouts. In contrast, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, suggesting ZnT8 inhibition as a therapeutic strategy in T2D prevention.
  •  
2.
  • Banasik, Karina, et al. (författare)
  • The FOXO3A rs2802292 G-Allele Associates with Improved Peripheral and Hepatic Insulin Sensitivity and Increased Skeletal Muscle-FOXO3A mRNA Expression in Twins.
  • 2011
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 96, s. 119-124
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The minor G allele of FOXO3A rs2802292 has been associated with longevity. We aimed to investigate whether a phenotype related to healthy metabolic aging could be identified in individuals carrying the longevity-associated FOXO3A rs2802292 G allele. Research Design and Methods: rs2802292 was genotyped in a phenotypically well-characterized population of young and elderly twins (n = 190) and in the population-based Inter99 cohort (n = 5768). All participants underwent oral glucose tolerance tests, and the twin population was additionally examined with an iv glucose tolerance test and a hyperinsulinemic, euglycemic clamp. Basal and insulin-stimulated FOXO3A mRNA expression was assessed in skeletal muscle biopsies from the twin population. Results: In the twin sample, carriers of the minor G allele of rs2802292 showed reduced fasting plasma insulin [per allele effect (β) = -13% (-24; -1) (95% confidence interval), P = 0.03] and lower incremental area under the curve 0-120 min for insulin after an oral glucose load [β = -14% (-23; -), P = 0.005]. The G allele was associated with increased peripheral insulin action [glucose disposal rate clamp, β = 0.85 mg·kgfat-free mass(-1) · min(-1) (0.049; 1.64), P = 0.04] and lower hepatic insulin resistance index [β = -13% (-25; -1), P = 0.03]. Furthermore, carriers of the G allele had increased basal FOXO3A mRNA expression in skeletal muscle compared with T-allele carriers [β = 16% (0; 33), P = 0.047]. In the Inter99 sample, we found an association with reduced incremental area under the curve 0-120 min for insulin after an oral glucose load [β = -3% (-5; -0.07), P = 0.04], but this association was not significant after adjustment for body mass index. Conclusion: Our data indicate that the minor G allele of FOXO3A rs2802292 is associated with enhanced peripheral and hepatic insulin sensitivity in our small twin cohort, which may be mediated through increased FOXO3A mRNA expression, although no major metabolic impact of rs2802292 was found in the large Inter99 cohort.
  •  
3.
  • Friedrichsen, Martin, et al. (författare)
  • Dissociation between Skeletal Muscle Inhibitor-{kappa}B Kinase/Nuclear Factor-{kappa}B Pathway Activity and Insulin Sensitivity in Nondiabetic Twins.
  • 2010
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 95:1, s. 414-421
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Several studies suggest a link between increased activity of the inflammatory inhibitor-kappaB kinase/nuclear factor-kappaB (IKK/NF-kappaB) pathway in skeletal muscle and insulin resistance. Objective: We aimed to study the regulation of skeletal muscle IKK/NF-kappaB pathway activity as well as the association with glucose metabolism and skeletal muscle insulin signaling. Methods: The study population included a metabolically well-characterized cohort of young and elderly predominantly nondiabetic twins (n = 181). Inhibitor-kappaBbeta (IkappaBbeta) protein levels are negatively associated with IKK/NF-kappaB pathway activity and were used to evaluate pathway activity with p65 levels included as loading control. This indirect measure for IKK/NF-kappaB pathway activity was validated by a p65 binding assay. Results: Evaluating the effects of heritability, age, sex, obesity, aerobic capacity, and several hormonal factors (eg insulin and TNF-alpha), only sex and age were significant predictors of IkappaBbeta to p65 ratio (28% decreased ratio in the elderly, P < 0.01, and 49% increased in males P < 0.01). IkappaBbeta to p65 ratio was unrelated to peripheral insulin sensitivity (P = 0.51) and in accordance with this also unrelated to proximal insulin signaling (P = 0.81). Although no association was seen with plasma glucose after oral glucose challenge, there was a tendency for lower IkappaBbeta to p65 ratio (adjusted for age and sex) in subjects with impaired as opposed to normal glucose tolerance (P = 0.055). Conclusions: Altogether the subtle elevated IKK/NF-kappaB pathway activity seen in glucose-intolerant subjects suggests that IKK/NF-kappaB pathway activation may be secondary to impaired glucose tolerance and that skeletal muscle IKK/NF-kappaB pathway activity is unlikely to play any major role in the control of skeletal muscle insulin action in nondiabetic subjects.
  •  
4.
  • Gillberg, Linn, et al. (författare)
  • Does DNA Methylation of PPARGC1A Influence Insulin Action in First Degree Relatives of Patients with Type 2 Diabetes?
  • 2013
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Epigenetics may play a role in the pathophysiology of type 2 diabetes (T2D), and increased DNA methylation of the metabolic master regulator peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) has been reported in muscle and pancreatic islets from T2D patients and in muscle from individuals at risk of T2D. This study aimed to investigate DNA promoter methylation and gene expression of PPARGC1A in skeletal muscle from first degree relatives (FDR) of T2D patients, and to determine the association with insulin action as well as the influence of family relation. We included 124 Danish FDR of T2D patients from 46 different families. Skeletal muscle biopsies were excised from vastus lateralis and insulin action was assessed by oral glucose tolerance tests. DNA methylation and mRNA expression levels were measured using bisulfite sequencing and quantitative real-time PCR, respectively. The average PPARGC1A methylation at four CpG sites situated 867-624 bp from the transcription start was associated with whole-body insulin sensitivity in a paradoxical positive manner (beta = 0.12, P = 0.03), supported by a borderline significant inverse correlation with fasting insulin levels (beta = -0.88, P = 0.06). Excluding individuals with prediabetes and overt diabetes did not affect the overall result. DNA promoter methylation was not associated with PPARGC1A gene expression. The familiality estimate of PPARGC1A gene expression was high (h(2) = 79 +/- 27% (h(2) +/- SE), P = 0.002), suggesting genetic regulation to play a role. No significant effect of familiality on DNA methylation was found. Taken together, increased DNA methylation of the PPARGC1A promoter is unlikely to play a major causal role for the development of insulin resistance in FDR of patients with T2D.
  •  
5.
  • Jacobsen, Stine C., et al. (författare)
  • Young men with low birthweight exhibit decreased plasticity of genome-wide muscle DNA methylation by high-fat overfeeding
  • 2014
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 57:6, s. 1154-1158
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis The association between low birthweight (LBW) and risk of developing type 2 diabetes may involve epigenetic mechanisms, with skeletal muscle being a prime target tissue. Differential DNA methylation patterns have been observed in single genes in muscle tissue from type 2 diabetic and LBW individuals, and we recently showed multiple DNA methylation changes during short-term high-fat overfeeding in muscle of healthy people. In a randomised crossover study, we analysed genome-wide DNA promoter methylation in skeletal muscle of 17 young LBW men and 23 matched normal birthweight (NBW) men after a control and a 5 day high-fat overfeeding diet. Methods DNA methylation was measured using Illumina's Infinium BeadArray covering 27,578 CpG sites representing 14,475 different genes. Results After correction for multiple comparisons, DNA methylation levels were found to be similar in the LBW and NBW groups during the control diet. Whereas widespread DNA methylation changes were observed in the NBW group in response to high-fat overfeeding, only a few methylation changes were seen in the LBW group (chi(2), p < 0.001). Conclusions/interpretation Our results indicate lower DNA methylation plasticity in skeletal muscle from LBW vs NBW men, potentially contributing to understanding the link between LBW and increased risk of type 2 diabetes.
  •  
6.
  • Ribel-Madsen, Rasmus, et al. (författare)
  • Impact of rs361072 in the Phosphoinositide 3-Kinase p110 beta Gene on Whole-Body Glucose Metabolism and Subunit Protein Expression in Skeletal Muscle
  • 2010
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 59:4, s. 1108-1112
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-Phosphoinositide 3-kinase (PI3K) is a major effector in insulin signaling. rs361072, located in the promoter of the gene (PIK3CB) for the p110 beta subunit, has previously been found to be associated with homeostasis model assessment for insulin resistance (HOMA-IR) in obese subjects. The aim was to investigate the influence of rs361072 on in vivo glucose metabolism, skeletal muscle PI3K subunit protein levels, and type 2 diabetes. RESEARCH DESIGN AND METHODS-The functional role of rs361072 was studied in 196 Danish healthy adult twins. Peripheral and hepatic insulin sensitivity was assessed by a euglycemic-hyperinsulinemic clamp. Basal and insulin-stimulated biopsies were taken from the vastus lateralis muscle, and tissue p110 beta and p85 alpha proteins were measured by Western blotting. The genetic association with type 2 diabetes and quantitative metabolic traits was investigated in 9,316 Danes with glucose tolerance ranging from normal to overt type 2 diabetes. RESULTS-While hepatic insulin resistance was similar in the fasting state, carriers of the minor G allele had lower hepatic glucose output (per-allele effect: 16%, P-add = 0.004) during high physiological insulin infusion. rs361072 did not associate with insulin-stimulated peripheral glucose disposal despite a decreased muscle p85 alpha:p110 beta protein ratio (P-add = 0.03) in G allele carriers. No association with HOMA-IR or type 2 diabetes (odds ratio 1.07, P = 0.5) was identified, and obesity did not interact with rs361072 on these traits. CONCLUSIONS-Our study suggests that the minor G allele of PIK3CB rs361072 associates with decreased muscle p85 alpha:p110 beta ratio and lower hepatic glucose production at high plasma insulin levels. However, no impact on type 2 diabetes prevalence was found. Diabetes 59:1108-1112, 2010
  •  
7.
  • Ribel-Madsen, Rasmus, et al. (författare)
  • Retinol-Binding Protein 4 in Young Men With Low Versus Normal Birth Weight: Physiological Response to Short-Term Overfeeding
  • 2011
  • Ingår i: Obesity. - : Wiley. - 1930-739X .- 1930-7381. ; 19:6, s. 1304-1306
  • Tidskriftsartikel (refereegranskat)abstract
    • Retinol-binding protein 4 (RBP4) is a plasma protein which is elevated in obesity and type 2 diabetes. We aimed to investigate whether RBP4 represents a mechanism underlying the associations between low birth weight (LBW), high-fat diet, and insulin resistance. Forty-six young, lean men with low (n = 20) or normal (n = 26) birth weight underwent a 5-day high-fat high-calorie (HFHC) dietary intervention. In vivo glucose metabolism was assessed by euglycemic-hyperinsulinemic clamp, glucose tracer and intravenous glucose tolerance test techniques. Body composition was measured by a dual-energy x-ray absorptiometry scan, and plasma RBP4 by an enzyme-linked immunosorbent assay. RBP4 was not associated with birth weight, but with BMI (beta = 0.9 mu g/ml (0.08;1.8) (95% confidence interval), P = 0.03) and plasma levels of low-density lipoprotein cholesterol (beta = 5.3 mu g/ml (1.9;8.7), P = 0.03) and triglycerides (beta = 15.4 mu g/ml (9.5;21.3), P < 0.001). Under baseline diet conditions, RBP4 was associated with decreased disposition index (D-i) (beta = -2.4% (-4.5%;-0.2%), P = 0.04) and increased basal hepatic glucose production rate (HGP) (beta = 0.02 mg kg(-1) min(-1) (0.002;0.04), P = 0.03), but not associated with peripheral glucose disposal rate or hepatic insulin resistance index. RBP4 levels were not influenced by overfeeding or related to peripheral and hepatic insulin resistance provoked by the dietary intervention. In conclusion, plasma RBP4 in young men associates with components of the metabolic syndrome, but is not determined by birth weight and seems not to be involved in short-term high-fat diet-induced insulin resistance.
  •  
8.
  • Vaag, Allan, et al. (författare)
  • Genetic, non-genetic and epigenetic risk determinants in developmental programming of type 2 diabetes.
  • 2014
  • Ingår i: Acta Obstetricia et Gynecologica Scandinavica. - : Wiley. - 1600-0412 .- 0001-6349. ; 93:11, s. 1099-1108
  • Forskningsöversikt (refereegranskat)abstract
    • Low birthweight (LBW) individuals and offspring of women with gestational diabetes mellitus (GDM) exhibit increased risk of developing type 2 diabetes (T2D) and associated cardiometabolic traits in adulthood, which for both groups may be mediated by adverse events and developmental changes in fetal life. T2D is a multifactorial disease occurring as a result of complicated interplay between genetic and both pre- as well as postnatal non-genetic factors, and it remains unknown to which extent the increased risk of T2D associated with LBW or GDM in the mother may be due to, or confounded by, genetic factors. Indeed, it has been shown that genetic changes influencing risk of diabetes may also be associated with reduced fetal growth as a result of reduced insulin secretion and/or action. Similarly, increased risk of T2D among offspring could be explained by T2D susceptibility genes shared between the mother and her offspring. Epigenetic mechanisms may explain the link between factors operating in fetal life and later risk of developing T2D, but so far convincing evidence is lacking for epigenetic changes as a prime and direct cause of T2D. This review addresses recent literature on the early origins of adult disease hypothesis, with a special emphasis on the role of genetic compared to non-genetic and epigenetic risk determinants and disease mechanisms. This article is protected by copyright. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy