SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Richmond R) ;lar1:(gu)"

Sökning: WFRF:(Richmond R) > Göteborgs universitet

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, Z., et al. (författare)
  • Genome-wide association analyses of physical activity and sedentary behavior provide insights into underlying mechanisms and roles in disease prevention
  • 2022
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 54:9, s. 1332-1344
  • Tidskriftsartikel (refereegranskat)abstract
    • Although physical activity and sedentary behavior are moderately heritable, little is known about the mechanisms that influence these traits. Combining data for up to 703,901 individuals from 51 studies in a multi-ancestry meta-analysis of genome-wide association studies yields 99 loci that associate with self-reported moderate-to-vigorous intensity physical activity during leisure time (MVPA), leisure screen time (LST) and/or sedentary behavior at work. Loci associated with LST are enriched for genes whose expression in skeletal muscle is altered by resistance training. A missense variant in ACTN3 makes the alpha-actinin-3 filaments more flexible, resulting in lower maximal force in isolated type IIA muscle fibers, and possibly protection from exercise-induced muscle damage. Finally, Mendelian randomization analyses show that beneficial effects of lower LST and higher MVPA on several risk factors and diseases are mediated or confounded by body mass index (BMI). Our results provide insights into physical activity mechanisms and its role in disease prevention. Multi-ancestry meta-analyses of genome-wide association studies for self-reported physical activity during leisure time, leisure screen time, sedentary commuting and sedentary behavior at work identify 99 loci associated with at least one of these traits.
  •  
2.
  • Warrington, N M, et al. (författare)
  • Maternal and fetal genetic contribution to gestational weight gain.
  • 2018
  • Ingår i: International journal of obesity. - : Springer Science and Business Media LLC. - 1476-5497 .- 0307-0565. ; 42:4, s. 775-84
  • Tidskriftsartikel (refereegranskat)abstract
    • Clinical recommendations to limit gestational weight gain (GWG) imply high GWG is causally related to adverse outcomes in mother or offspring, but GWG is the sum of several inter-related complex phenotypes (maternal fat deposition and vascular expansion, placenta, amniotic fluid and fetal growth). Understanding the genetic contribution to GWG could help clarify the potential effect of its different components on maternal and offspring health. Here we explore the genetic contribution to total, early and late GWG.A genome-wide association study was used to identify maternal and fetal variants contributing to GWG in up to 10543 mothers and 16317 offspring of European origin, with replication in 10660 mothers and 7561 offspring. Additional analyses determined the proportion of variability in GWG from maternal and fetal common genetic variants and the overlap of established genome-wide significant variants for phenotypes relevant to GWG (for example, maternal body mass index (BMI) and glucose, birth weight).Approximately 20% of the variability in GWG was tagged by common maternal genetic variants, and the fetal genome made a surprisingly minor contribution to explain variation in GWG. Variants near the pregnancy-specific beta-1 glycoprotein 5 (PSG5) gene reached genome-wide significance (P=1.71 × 10-8) for total GWG in the offspring genome, but did not replicate. Some established variants associated with increased BMI, fasting glucose and type 2 diabetes were associated with lower early, and higher later GWG. Maternal variants related to higher systolic blood pressure were related to lower late GWG. Established maternal and fetal birth weight variants were largely unrelated to GWG.We found a modest contribution of maternal common variants to GWG and some overlap of maternal BMI, glucose and type 2 diabetes variants with GWG. These findings suggest that associations between GWG and later offspring/maternal outcomes may be due to the relationship of maternal BMI and diabetes with GWG.International Journal of Obesity advance online publication, 21 November 2017; doi:10.1038/ijo.2017.248.
  •  
3.
  • Middeldorp, Christel M., et al. (författare)
  • The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia : design, results and future prospects
  • 2019
  • Ingår i: European Journal of Epidemiology. - : Springer Science and Business Media LLC. - 0393-2990 .- 1573-7284. ; 34:3, s. 279-300
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.
  •  
4.
  • Beaumont, Robin N, et al. (författare)
  • Genome-wide association study of offspring birth weight in 86,577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics.
  • 2018
  • Ingår i: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 1460-2083 .- 0964-6906. ; 27:4, s. 742-756
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) of birth weight have focused on fetal genetics, while relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86,577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother-child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P<5x10-8. In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights.
  •  
5.
  • Klaric, Lucija, et al. (författare)
  • Mendelian randomisation identifies alternative splicing of the FAS death receptor as a mediator of severe COVID-19.
  • 2021
  • Ingår i: medRxiv : the preprint server for health sciences. - : Cold Spring Harbor Laboratory. ; , s. 1-28
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Severe COVID-19 is characterised by immunopathology and epithelial injury. Proteomic studies have identified circulating proteins that are biomarkers of severe COVID-19, but cannot distinguish correlation from causation. To address this, we performed Mendelian randomisation (MR) to identify proteins that mediate severe COVID-19. Using protein quantitative trait loci (pQTL) data from the SCALLOP consortium, involving meta-analysis of up to 26,494 individuals, and COVID-19 genome-wide association data from the Host Genetics Initiative, we performed MR for 157 COVID-19 severity protein biomarkers. We identified significant MR results for five proteins: FAS, TNFRSF10A, CCL2, EPHB4 and LGALS9. Further evaluation of these candidates using sensitivity analyses and colocalization testing provided strong evidence to implicate the apoptosis-associated cytokine receptor FAS as a causal mediator of severe COVID-19. This effect was specific to severe disease. Using RNA-seq data from 4,778 individuals, we demonstrate that the pQTL at the FAS locus results from genetically influenced alternate splicing causing skipping of exon 6. We show that the risk allele for very severe COVID-19 increases the proportion of transcripts lacking exon 6, and thereby increases soluble FAS. Soluble FAS acts as a decoy receptor for FAS-ligand, inhibiting apoptosis induced through membrane-bound FAS. In summary, we demonstrate a novel genetic mechanism that contributes to risk of severe of COVID-19, highlighting a pathway that may be a promising therapeutic target.
  •  
6.
  • Cuddihy, Laury, et al. (författare)
  • Vertebral Body Stapling versus Bracing for Patients with High-Risk Moderate Idiopathic Scoliosis.
  • 2015
  • Ingår i: BioMed research international. - : Hindawi Limited. - 2314-6141 .- 2314-6133. ; 2015
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a comparison study of vertebral body stapling (VBS) versus a matched bracing cohort for immature patients with moderate (25 to 44°) idiopathic scoliosis (IS).42 of 49 consecutive patients (86%) with IS were treated with VBS and followed for a minimum of 2 years. They were compared to 121 braced patients meeting identical inclusion criteria. 52 patients (66 curves) were matched according to age at start of treatment (10.6 years versus 11.1 years, resp. [P = 0.07]) and gender.For thoracic curves 25-34°, VBS had a success rate (defined as curve progression <10°) of 81% versus 61% for bracing (P = 0.16). In thoracic curves 35-44°, VBS and bracing both had a poor success rate. For lumbar curves, success rates were similar in both groups for curves measuring 25-34°.In this comparison of two cohorts of patients with high-risk (Risser 0-1) moderate IS (25-44°), in smaller thoracic curves (25-34°) VBS provided better results as a clinical trend as compared to bracing. VBS was found not to be effective for thoracic curves ≥35°. For lumbar curves measuring 25-34°, results appear to be similar for both VBS and bracing, at 80% success.
  •  
7.
  • Tyrrell, Jessica, et al. (författare)
  • Genetic Evidence for Causal Relationships Between Maternal Obesity-Related Traits and Birth Weight.
  • 2016
  • Ingår i: JAMA. - : American Medical Association (AMA). - 1538-3598 .- 0098-7484. ; 315:11, s. 1129-40
  • Tidskriftsartikel (refereegranskat)abstract
    • Neonates born to overweight or obese women are larger and at higher risk of birth complications. Many maternal obesity-related traits are observationally associated with birth weight, but the causal nature of these associations is uncertain.To test for genetic evidence of causal associations of maternal body mass index (BMI) and related traits with birth weight.Mendelian randomization to test whether maternal BMI and obesity-related traits are potentially causally related to offspring birth weight. Data from 30,487 women in 18 studies were analyzed. Participants were of European ancestry from population- or community-based studies in Europe, North America, or Australia and were part of the Early Growth Genetics Consortium. Live, term, singleton offspring born between 1929 and 2013 were included.Genetic scores for BMI, fasting glucose level, type 2 diabetes, systolic blood pressure (SBP), triglyceride level, high-density lipoprotein cholesterol (HDL-C) level, vitamin D status, and adiponectin level.Offspring birth weight from 18 studies.Among the 30,487 newborns the mean birth weight in the various cohorts ranged from 3325 g to 3679 g. The maternal genetic score for BMI was associated with a 2-g (95% CI, 0 to 3 g) higher offspring birth weight per maternal BMI-raising allele (P=.008). The maternal genetic scores for fasting glucose and SBP were also associated with birth weight with effect sizes of 8 g (95% CI, 6 to 10 g) per glucose-raising allele (P=7×10(-14)) and -4 g (95% CI, -6 to -2 g) per SBP-raising allele (P=1×10(-5)), respectively. A 1-SD (≈4 points) genetically higher maternal BMI was associated with a 55-g higher offspring birth weight (95% CI, 17 to 93 g). A 1-SD (≈7.2 mg/dL) genetically higher maternal fasting glucose concentration was associated with 114-g higher offspring birth weight (95% CI, 80 to 147 g). However, a 1-SD (≈10 mm Hg) genetically higher maternal SBP was associated with a 208-g lower offspring birth weight (95% CI, -394 to -21 g). For BMI and fasting glucose, genetic associations were consistent with the observational associations, but for systolic blood pressure, the genetic and observational associations were in opposite directions.In this mendelian randomization study, genetically elevated maternal BMI and blood glucose levels were potentially causally associated with higher offspring birth weight, whereas genetically elevated maternal SBP was potentially causally related to lower birth weight. If replicated, these findings may have implications for counseling and managing pregnancies to avoid adverse weight-related birth outcomes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
Typ av publikation
tidskriftsartikel (6)
annan publikation (1)
Typ av innehåll
refereegranskat (6)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Jacobsson, Bo, 1960 (4)
Melbye, Mads (3)
Richmond, Rebecca C. (3)
McCarthy, Mark I (3)
Willemsen, Gonneke (3)
Hattersley, Andrew T (3)
visa fler...
Hakonarson, Hakon (3)
Evans, David M (3)
Lawlor, Debbie A (3)
Hottenga, Jouke-Jan (3)
Paternoster, Lavinia (3)
Cavadino, Alana (3)
Tyrrell, Jessica (3)
Horikoshi, Momoko (3)
Geller, Frank (3)
Myhre, Ronny (3)
Bradfield, Jonathan ... (3)
Das, Shikta (3)
Hocher, Berthold (3)
Medland, Sarah E (3)
Estivill, Xavier (2)
Sengpiel, Verena, 19 ... (2)
Enroth, Stefan, 1976 ... (2)
Johansson, Åsa (2)
Jarvelin, M. R. (2)
Martin, Nicholas G. (2)
Boomsma, Dorret I. (2)
Spector, Tim D. (2)
Hansen, T. (2)
Yaghootkar, Hanieh (2)
Melbye, M (2)
Wilson, James F. (2)
Raitakari, O. T. (2)
Hofman, Albert (2)
Ring, Susan M (2)
Warrington, Nicole M (2)
Pennell, Craig E (2)
Holloway, John W (2)
Beaumont, Robin N (2)
Nodzenski, Michael (2)
Kreiner-Møller, Eski ... (2)
Huikari, Ville (2)
Metrustry, Sarah (2)
Painter, Jodie N (2)
Allard, Catherine (2)
Ang, Wei (2)
Berry, Diane J (2)
Bouchard, Luigi (2)
Heikkinen, Jani (2)
Lind, Penelope A (2)
visa färre...
Lärosäte
Lunds universitet (3)
Karolinska Institutet (3)
Uppsala universitet (2)
Örebro universitet (1)
Mittuniversitetet (1)
Språk
Engelska (7)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (7)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy