SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Riddle M) ;pers:(Masci F. J.)"

Sökning: WFRF:(Riddle M) > Masci F. J.

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anand, S., et al. (författare)
  • Optical follow-up of the neutron star–black hole mergers S200105ae and S200115j
  • 2020
  • Ingår i: Nature Astronomy. - : Nature Research. - 2397-3366.
  • Tidskriftsartikel (refereegranskat)abstract
    • LIGO and Virgo’s third observing run revealed the first neutron star–black hole (NSBH) merger candidates in gravitational waves. These events are predicted to synthesize r-process elements1,2 creating optical/near-infrared ‘kilonova’ emission. The joint gravitational wave and electromagnetic detection of an NSBH merger could be used to constrain the equation of state of dense nuclear matter3, and independently measure the local expansion rate of the Universe4. Here, we present the optical follow-up and analysis of two of the only three high-significance NSBH merger candidates detected to date, S200105ae and S200115j, with the Zwicky Transient Facility5. The Zwicky Transient Facility observed ~48% of S200105ae and ~22% of S200115j’s localization probabilities, with observations sensitive to kilonovae brighter than −17.5 mag fading at 0.5 mag d−1 in the g- and r-bands; extensive searches and systematic follow-up of candidates did not yield a viable counterpart. We present state-of-the-art kilonova models tailored to NSBH systems that place constraints on the ejecta properties of these NSBH mergers. We show that with observed depths of apparent magnitude ~22 mag, attainable in metre-class, wide-field-of-view survey instruments, strong constraints on ejecta mass are possible, with the potential to rule out low mass ratios, high black hole spins and large neutron star radii.
  •  
2.
  • Miller, A. A., et al. (författare)
  • The Spectacular Ultraviolet Flash from the Peculiar Type Ia Supernova 2019yvq
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 898:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Early observations of Type Ia supernovae (SNe Ia) provide essential clues for understanding the progenitor system that gave rise to the terminal thermonuclear explosion. We present exquisite observations of SN 2019yvq, the second observed SN Ia, after iPTF 14atg, to display an early flash of emission in the ultraviolet (UV) and optical. Our analysis finds that SN 2019yvq was unusual, even when ignoring the initial flash, in that it was moderately underluminous for an SN Ia ( mag at peak) yet featured very high absorption velocities ( km s−1 for Si ii λ6355 at peak). We find that many of the observational features of SN 2019yvq, aside from the flash, can be explained if the explosive yield of radioactive 56Ni is relatively low (we measure ) and it and other iron-group elements are concentrated in the innermost layers of the ejecta. To explain both the UV/optical flash and peak properties of SN 2019yvq we consider four different models: interaction between the SN ejecta and a nondegenerate companion, extended clumps of 56Ni in the outer ejecta, a double-detonation explosion, and the violent merger of two white dwarfs. Each of these models has shortcomings when compared to the observations; it is clear additional tuning is required to better match SN 2019yvq. In closing, we predict that the nebular spectra of SN 2019yvq will feature either H or He emission, if the ejecta collided with a companion, strong [Ca ii] emission, if it was a double detonation, or narrow [O i] emission, if it was due to a violent merger.
  •  
3.
  • Yan, Lin, et al. (författare)
  • Helium-rich Superluminous Supernovae from the Zwicky Transient Facility
  • 2020
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 902:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Helium is expected to be present in the massive ejecta of some hydrogen-poor superluminous supernovae (SLSN-I). However, until now only one event has been identified with He features in its photospheric spectra (PTF10hgi). We present the discovery of a new He-rich SLSN-I, ZTF19aawfbtg (SN2019hge), atz = 0.0866. This event has more than 10 optical spectra at phases from -41 to +103 days relative to the peak, most of which match well with that of PTF10hgi. Confirmation comes from a near-IR spectrum taken at +34 days, revealing Heifeatures with P-Cygni profiles at 1.083 and 2.058 mu m. Using the optical spectra of PTF10hgi and SN2019hge as templates, we examined 70 other SLSNe-I discovered by Zwicky Transient Facility in the first two years of operation and found five additional SLSNe-I with distinct He-features. The excitation of Heiatoms in normal core-collapse supernovae requires nonthermal radiation, as proposed by previous studies. These He-rich events cannot be explained by the traditional(56)Ni mixing model because of their blue spectra, high peak luminosities, and long rise timescales. Magnetar models offer a possible solution since pulsar winds naturally generate high-energy particles, potential sources of nonthermal excitation. An alternative model is the interaction between the ejecta and dense H-poor circumstellar material, which may be supported by observed undulations in the light curves. These six SLSNe-Ib have relatively low-peak luminosities (rest frameM(g) = -20.06 0.16).
  •  
4.
  • Fremling, C., et al. (författare)
  • The Zwicky Transient Facility Bright Transient Survey. I. Spectroscopic Classification and the Redshift Completeness of Local Galaxy Catalogs
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 895:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Zwicky Transient Facility (ZTF) is performing a three-day cadence survey of the visible northern sky (similar to 3 pi) with newly found transient candidates announced via public alerts. The ZTF Bright Transient Survey (BTS) is a large spectroscopic campaign to complement the photometric survey. BTS endeavors to spectroscopically classify all extragalactic transients with m(peak) <= 18.5 mag in either the g(ZTF) or r(ZTF) filters, and publicly announce said classifications. BTS discoveries are predominantly supernovae (SNe), making this the largest flux-limited SN survey to date. Here we present a catalog of 761 SNe, classified during the first nine months of ZTF (2018 April 1-2018 December 31). We report BTS SN redshifts from SN template matching and spectroscopic host-galaxy redshifts when available. We analyze the redshift completeness of local galaxy catalogs, the redshift completeness fraction (RCF; the ratio of SN host galaxies with known spectroscopic redshift prior to SN discovery to the total number of SN hosts). Of the 512 host galaxies with SNe Ia, 227 had previously known spectroscopic redshifts, yielding an RCF estimate of 44% 4%. The RCF decreases with increasing distance and decreasing galaxy luminosity (for z < 0.05, or similar to 200 Mpc, RCF 0.6). Prospects for dramatically increasing the RCF are limited to new multifiber spectroscopic instruments or wide-field narrowband surveys. Existing galaxy redshift catalogs are only similar to 50% complete at r 16.9 mag. Pushing this limit several magnitudes deeper will pay huge dividends when searching for electromagnetic counterparts to gravitational wave events or sources of ultra-high-energy cosmic rays or neutrinos.
  •  
5.
  • Fremling, C., et al. (författare)
  • ZTF18aalrxas : A Type IIb Supernova from a Very Extended Low-mass Progenitor
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 878:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate ZTF18aalrxas, a double-peaked Type IIb core-collapse supernova (SN) discovered during science validation of the Zwicky Transient Facility. ZTF18aalrxas was discovered while the optical emission was still rising toward the initial cooling peak (0.7 mag over 2 days). Our observations consist of multi-band (ultraviolet and optical) light curves (LCs), and optical spectra spanning from approximate to 0.7 to approximate to 480 days past the explosion. We use a Monte-Carlo based non-local thermodynamic equilibrium model that simultaneously reproduces both the Ni-56-powered bolometric LC and our nebular spectrum. This model is used to constrain the synthesized radioactive nickel mass (0.17 M-circle dot) and the total ejecta mass (1.7 M-circle dot) of the SN. The cooling emission is modeled using semi-analytical extended envelope models to constrain the progenitor radius (790-1050 R-circle dot) at the time of explosion. Our nebular spectrum shows signs of interaction with a dense circumstellar medium (CSM), and this spectrum is modeled and analyzed to constrain the amount of ejected oxygen (0.3-0.5 M-circle dot) and the total hydrogen mass (approximate to 0.15 M-circle dot) in the envelope of the progenitor. The oxygen mass of ZTF18aalrxas is consistent with a low (12-13 M-circle dot) zero-age main-sequence mass progenitor. The LCs and spectra of ZTF18aalrxas are not consistent with massive single-star SN Type IIb progenitor models. The presence of an extended hydrogen envelope of low mass, the presence of a dense CSM, the derived ejecta mass, and the late-time oxygen emission can all be explained in a binary model scenario.
  •  
6.
  • Karamehmetoglu, Emir, et al. (författare)
  • The luminous and rapidly evolving SN 2018bcc : Clues toward the origin of Type Ibn SNe from the Zwicky Transient Facility
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 649
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Supernovae (SNe) Type Ibn are rapidly evolving and bright ( MR;peak similar to 19) transients interacting with He-rich circumstellar material (CSM). SN 2018bcc, detected by the ZTF shortly after explosion, provides the best constraints on the shape of the rising light curve (LC) of a fast Type Ibn.Aims. We used the high-quality data set of SN 2018bcc to study observational signatures of the class. Additionally, the powering mechanism of SN 2018bcc o ffers insights into the debated progenitor connection of Type Ibn SNe.Methods. We compared well-constrained LC properties obtained from empirical models with the literature. We fit the pseudobolometric LC with semi-analytical models powered by radioactive decay and CSM interaction. Finally, we modeled the line profiles and emissivity of the prominent He i lines, in order to study the formation of P-Cygni profiles and to estimate CSM properties.Results. SN 2018bcc had a rise time to peak of the LC of 5:6+0:2 0:1 days in the restframe with a rising shape power-law index close to 2, and seems to be a typical rapidly evolving Type Ibn SN. The spectrum lacked signatures of SN-like ejecta and was dominated by over 15 He emission features at 20 days past peak, alongside Ca and Mg, all with VFWHM similar to 2000 km s 1. The luminous and rapidly evolving LC could be powered by CSM interaction but not by the decay of radioactive 56Ni. Modeling of the He i lines indicated a dense and optically thick CSM that can explain the P-Cygni profiles.Conclusions. Like other rapidly evolving Type Ibn SNe, SN 2018bcc is a luminous transient with a rapid rise to peak powered by shock interaction inside a dense and He-rich CSM. Its spectra do not support the existence of two Type Ibn spectral classes. We also note the remarkable observational match to pulsational pair instability SN models.
  •  
7.
  • Tartaglia, Leonardo, et al. (författare)
  • SN 2018ijp : the explosion of a stripped-envelope star within a dense H-rich shell?
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 650
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we discuss the outcomes of the follow-up campaign of SN 2018ijp, discovered as part of the Zwicky Transient Facility survey for optical transients. Its first spectrum shows similarities to broad-lined Type Ic supernovae around maximum light, whereas later spectra display strong signatures of interaction between rapidly expanding ejecta and a dense H-rich circumstellar medium, coinciding with a second peak in the photometric evolution of the transient. This evolution, along with the results of modeling of the first light-curve peak, suggests a scenario where a stripped star exploded within a dense circumstellar medium. The two main phases in the evolution of the transient could be interpreted as a first phase dominated by radioactive decays, and a later interaction-dominated phase where the ejecta collide with a pre-existing shell. We therefore discuss SN 2018jp within the context of a massive star depleted of its outer layers exploding within a dense H-rich circumstellar medium.
  •  
8.
  • Kangas, Tuomas, et al. (författare)
  • The Zwicky Transient Facility phase I sample of hydrogen-rich superluminous supernovae without strong narrow emission lines
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 516:1, s. 1193-1218
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a sample of 14 hydrogen-rich superluminous supernovae (SLSNe II) from the Zwicky Transient Facility (ZTF) between 2018 and 2020. We include all classified SLSNe with peaks M-g < -20 mag with observed broad but not narrow Balmer emission, corresponding to roughly 20 per cent of all hydrogen-rich SLSNe in ZTF phase I. We examine the light curves and spectra of SLSNe II and attempt to constrain their power source using light-curve models. The brightest events are photometrically and spectroscopically similar to the prototypical SN 2008es, while others are found spectroscopically more reminiscent of non-superluminous SNe II, especially SNe II-L. Ni-56 decay as the primary power source is ruled out. Light-curve models generally cannot distinguish between circumstellar interaction (CSI) and a magnetar central engine, but an excess of ultraviolet (UV) emission signifying CSI is seen in most of the SNe with UV data, at a wide range of photometric properties. Simultaneously, the broad H alpha profiles of the brightest SLSNe II can be explained through electron scattering in a symmetric circumstellar medium (CSM). In other SLSNe II without narrow lines, the CSM may be confined and wholly overrun by the ejecta. CSI, possibly involving mass lost in recent eruptions, is implied to be the dominant power source in most SLSNe II, and the diversity in properties is likely the result of different mass loss histories. Based on their radiated energy, an additional power source may be required for the brightest SLSNe II, however - possibly a central engine combined with CSI.
  •  
9.
  • Miller, A. A., et al. (författare)
  • ZTF Early Observations of Type Ia Supernovae. II. First Light, the Initial Rise, and Time to Reach Maximum Brightness
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 902:1
  • Tidskriftsartikel (refereegranskat)abstract
    • While it is clear that Type Ia supernovae (SNe) are the result of thermonuclear explosions in C/O white dwarfs (WDs), a great deal remains uncertain about the binary companion that facilitates the explosive disruption of the WD. Here, we present a comprehensive analysis of a large, unique data set of 127 SNe Ia with exquisite coverage by the Zwicky Transient Facility (ZTF). High-cadence (six observations per night) ZTF observations allow us to measure the SN rise time and examine its initial evolution. We develop a Bayesian framework to model the early rise as a power law in time, which enables the inclusion of priors in our model. For a volume-limited subset of normal SNe Ia, we find that the mean power-law index is consistent with 2 in the r(ZTF)-band (alpha(r) = 2.01 +/- 0.02), as expected in the expanding fireball model. There are, however, individual SNe that are clearly inconsistent with alpha(r) = 2. We estimate a mean rise time of 18.9 days (with a range extending from similar to 15 to 22 days), though this is subject to the adopted prior. We identify an important, previously unknown, bias whereby the rise times for higherredshift SNe within a flux-limited survey are systematically underestimated. This effect can be partially alleviated if the power-law index is fixed to alpha = 2, in which case we estimate a mean rise time of 21.7 days (with a range from similar to 18 to 23 days). The sample includes a handful of rare and peculiar SNe Ia. Finally, we conclude with a discussion of lessons learned from the ZTF sample that can eventually be applied to observations from the Vera C..Rubin Observatory.
  •  
10.
  • Yang, Sheng, et al. (författare)
  • Is supernova SN 2020faa an iPTF14hls look-alike?
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 646
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. We present observations of ZTF20aatqesi (SN 2020faa). This Type II supernova (SN) displays a luminous light curve (LC) that started to rebrighten from an initial decline. We investigate this in relation to the famous SN iPTF14hls, which received a great deal of attention and multiple interpretations in the literature, but whose nature and source of energy still remain unknown.Aims. We demonstrate the great similarity between SN 2020faa and iPTF14hls during the first 6 months, and use this comparison to forecast the evolution of SN 2020faa and to reflect on the less well observed early evolution of iPTF14hls.Methods. We present and analyse our observational data, consisting mainly of optical LCs from the Zwicky Transient Facility in the gri bands and of a sequence of optical spectra. We construct colour curves and a bolometric lc, and we compare ejecta-velocity and black-body radius evolutions for the two supernovae (SNe) and for more typical Type II SNe.Results. The LCs show a great similarity with those of iPTF14hls over the first 6 months in luminosity, timescale, and colour. In addition, the spectral evolution of SN 2020faa is that of a Type II SN, although it probes earlier epochs than those available for iPTF14hls.Conclusions. The similar LC behaviour is suggestive of SN 2020faa being a new iPTF14hls. We present these observations now to advocate follow-up observations, since most of the more striking evolution of SN iPTF14hls came later, with LC undulations and a spectacular longevity. On the other hand, for SN 2020faa we have better constraints on the explosion epoch than we had for iPTF14hls, and we have been able to spectroscopically monitor it from earlier phases than was done for the more famous sibling.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy