SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Riecher Rössler Anita) "

Sökning: WFRF:(Riecher Rössler Anita)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dickens, Alex M., et al. (författare)
  • Dysregulated Lipid Metabolism Precedes Onset of Psychosis
  • 2021
  • Ingår i: Biological Psychiatry. - : Elsevier. - 0006-3223 .- 1873-2402. ; 89:3, s. 288-297
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: A key clinical challenge in the management of individuals at clinical high risk for psychosis (CHR) is that it is difficult to predict their future clinical outcomes. Here, we investigated if the levels of circulating molecular lipids are related to adverse clinical outcomes in this group.METHODS: Serum lipidomic analysis was performed in 263 CHR individuals and 51 healthy control subjects, who were then clinically monitored for up to 5 years. Machine learning was used to identify lipid profiles that discriminated between CHR and control subjects, and between subgroups of CHR subjects with distinct clinical outcomes.RESULTS: At baseline, compared with control subjects, CHR subjects (independent of outcome) had higher levels of triacylglycerols with a low acyl carbon number and a double bond count, as well as higher levels of lipids in general. CHR subjects who subsequently developed psychosis (n = 50) were distinguished from those that did not (n = 213) on the basis of lipid profile at baseline using a model with an area under the receiver operating curve of 0.81 (95% confidence interval = 0.69-0.93). CHR subjects who became psychotic had lower levels of ether phospholipids than CHR individuals who did not (p < .01).CONCLUSIONS: Collectively, these data suggest that lipidomic abnormalities predate the onset of psychosis and that blood lipidomic measures may be useful in predicting which CHR individuals are most likely to develop psychosis.
  •  
2.
  • Petrov, Dmitry, et al. (författare)
  • Machine Learning for Large-Scale Quality Control of 3D Shape Models in Neuroimaging
  • 2017
  • Ingår i: Machine learning in medical imaging. MLMI (Workshop). - Cham : Springer International Publishing. ; 10541, s. 371-378
  • Tidskriftsartikel (refereegranskat)abstract
    • As very large studies of complex neuroimaging phenotypes become more common, human quality assessment of MRI-derived data remains one of the last major bottlenecks. Few attempts have so far been made to address this issue with machine learning. In this work, we optimize predictive models of quality for meshes representing deep brain structure shapes. We use standard vertex-wise and global shape features computed homologously across 19 cohorts and over 7500 human-rated subjects, training kernelized Support Vector Machine and Gradient Boosted Decision Trees classifiers to detect meshes of failing quality. Our models generalize across datasets and diseases, reducing human workload by 30-70%, or equivalently hundreds of human rater hours for datasets of comparable size, with recall rates approaching inter-rater reliability.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy