SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rieckmann A) ;lar1:(su)"

Search: WFRF:(Rieckmann A) > Stockholm University

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ebner, Natalie C., et al. (author)
  • Processing own-age vs. other-age faces : Neuro-behavioral correlates and effects of emotion
  • 2013
  • In: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 78, s. 363-371
  • Journal article (peer-reviewed)abstract
    • Age constitutes a salient feature of a face and signals group membership. There is evidence of greater attention to and better memory for own-age than other-age faces. However, little is known about the neural and behavioral mechanisms underlying processing differences for own-age vs. other-age faces. Even less is known about the impact of emotion expressed in faces on such own-age effects. Using fMRI, the present study examined brain activity while young and older adult participants identified expressions of neutral, happy, and angry young and older faces. Across facial expressions, medial prefrontal cortex, insula, and (for older participants) amygdala showed greater activity to own-age than other-age faces. These own-age effects in ventral medial prefrontal cortex and insula held for neutral and happy faces, but not for angry faces. This novel and intriguing finding suggests that processing of negative facial emotions under some conditions overrides age-of-face effects.
  •  
2.
  • Rypma, Bart, et al. (author)
  • Dopamine D1 Binding Potential Predicts Fusiform BOLD Activity during Face-Recognition Performance
  • 2015
  • In: Journal of Neuroscience. - : Society for Neuroscience. - 0270-6474 .- 1529-2401. ; 35:44, s. 14702-14707
  • Journal article (peer-reviewed)abstract
    • The importance of face memory in humans and primates is well established, but little is known about the neurotransmitter systems involved in face recognition. We tested the hypothesis that face recognition is linked to dopamine (DA) activity in fusiform gyrus (FFG). DA availability was assessed by measuring D1 binding potential (BP) during rest using PET. We further assessed blood-oxygen-level-dependent (BOLD) signal change while subjects performed a face-recognition task during fMRI scanning. There was a strong association between D1 BP and BOLD activity in FFG, whereasD1BPin striatal and other extrastriatal regions were unrelated to neural activity in FFG. These results suggest that D1 BP locally modulates FFG function during face recognition. Observed relationships among D1 BP, BOLD activity, and face-recognition performance further suggest that D1 receptors place constraints on the responsiveness of FFG neurons.
  •  
3.
  • Salami, Alireza, et al. (author)
  • Dopamine D-2/3 Binding Potential Modulates Neural Signatures of Working Memory in a Load-Dependent Fashion
  • 2019
  • In: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 39:3, s. 537-547
  • Journal article (peer-reviewed)abstract
    • Dopamine (DA) modulates corticostriatal connections. Studies in which imaging of the DA system is integrated with functional imaging during cognitive performance have yielded mixed findings. Some work has shown a link between striatal DA(measured by PET) and fMRI activations, whereas others have failed to observe such a relationship. One possible reason for these discrepant findings is differences in task demands, such that a more demanding task with greater prefrontal activations may yield a stronger association with DA. Moreover, a potential DA-BOLD association may be modulated by task performance. We studied 155 (104 normal-performing and 51 low-performing) healthy older adults (43% females) who underwent fMRI scanning while performing a working memory (WM) n-back task along with DA D-2/3 PET assessment using [C-11] raclopride. Using multivariate partial-least-squares analysis, we observed a significant pattern revealing positive associations of striatal as well as extrastriatal DA D-2/3 receptors to BOLD response in the thalamo-striatalcortical circuit, which supports WM functioning. Critically, the DA-BOLD association in normal-performing, but not low-performing, individuals was expressed in a load-dependent fashion, with stronger associations during 3-back than 1-/2-back conditions. Moreover, normal-performing adults expressing upregulated BOLD in response to increasing task demands showed a stronger DA-BOLD association during 3-back, whereas low-performing individuals expressed a stronger association during 2-back conditions. This pattern suggests a nonlinear DA-BOLD performance association, with the strongest link at the maximum capacity level. Together, our results suggest that DA may have a stronger impact on functional brain responses during more demanding cognitive tasks.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view