SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rigault Mickael) ;pers:(Laher Russ R.)"

Sökning: WFRF:(Rigault Mickael) > Laher Russ R.

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bellm, Eric C., et al. (författare)
  • The Zwicky Transient Facility : System Overview, Performance, and First Results
  • 2019
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 131:995
  • Tidskriftsartikel (refereegranskat)abstract
    • The Zwicky Transient Facility (ZTF) is a new optical time-domain survey that uses the Palomar 48 inch Schmidt telescope. A custom-built wide-field camera provides a 47 deg(2) field of view and 8 s readout time, yielding more than an order of magnitude improvement in survey speed relative to its predecessor survey, the Palomar Transient Factory. We describe the design and implementation of the camera and observing system. The ZTF data system at the Infrared Processing and Analysis Center provides near-real-time reduction to identify moving and varying objects. We outline the analysis pipelines, data products, and associated archive. Finally, we present on-sky performance analysis and first scientific results from commissioning and the early survey. ZTF's public alert stream will serve as a useful precursor for that of the Large Synoptic Survey Telescope.
  •  
2.
  • Dhawan, Suhail, et al. (författare)
  • A Uniform Type Ia Supernova Distance Ladder with the Zwicky Transient Facility : Absolute Calibration Based on the Tip of the Red Giant Branch Method
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 934:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The current Cepheid-calibrated distance ladder measurement of H0 is reported to be in tension with the values inferred from the cosmic microwave background (CMB), assuming standard cosmology. However, some tip of the red giant branch (TRGB) estimates report H0 in better agreement with the CMB. Hence, it is critical to reduce systematic uncertainties in local measurements to understand the Hubble tension. In this paper, we propose a uniform distance ladder between the second and third rungs, combining Type Ia supernovae (SNe Ia) observed by the Zwicky Transient Facility (ZTF) with a TRGB calibration of their absolute luminosity. A large, volume-limited sample of both calibrator and Hubble flow SNe Ia from the same survey minimizes two of the largest sources of systematics: host-galaxy bias and nonuniform photometric calibration. We present results from a pilot study using the existing TRGB distance to the host galaxy of ZTF SN Ia SN 2021rhu (aka ZTF21abiuvdk) in NGC7814. Combining the ZTF calibrator with a volume-limited sample from the first data release of ZTF Hubble flow SNe Ia, we infer H0 = 76.94 ± 6.4 km s−1 Mpc−1, an 8.3% measurement. The error budget is dominated by the single object calibrating the SN Ia luminosity in this pilot study. However, the ZTF sample includes already five other SNe Ia within ∼20 Mpc for which TRGB distances can be obtained with the Hubble Space Telescope. Finally, we present the prospects of building this distance ladder out to 80 Mpc with James Webb Space Telescope observations of more than 100 ZTF SNe Ia.
  •  
3.
  • Horesh, Assaf, et al. (författare)
  • A Non-equipartition Shock Wave Traveling in a Dense Circumstellar Environment around SN 2020oi
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 903:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery and panchromatic follow-up observations of the young Type Ic supernova (SN Ic) SN 2020oi in M100, a grand-design spiral galaxy at a mere distance of 14 Mpc. We followed up with observations at radio, X-ray, and optical wavelengths from only a few days to several months after explosion. The optical behavior of the supernova is similar to those of other normal SNe Ic. The event was not detected in the X-ray band but our radio observations revealed a bright mJy source (L-nu approximate to 1.2 x 10(27) erg s(-1) Hz(-1)). Given the relatively small number of stripped envelope SNe for which radio emission is detectable, we used this opportunity to perform a detailed analysis of the comprehensive radio data set we obtained. The radio-emitting electrons initially experience a phase of inverse Compton cooling, which leads to steepening of the spectral index of the radio emission. Our analysis of the cooling frequency points to a large deviation from equipartition at the level of epsilon(e)/epsilon(B) greater than or similar to 200, similar to a few other cases of stripped envelope SNe. Our modeling of the radio data suggests that the shock wave driven by the SN ejecta into the circumstellar matter (CSM) is moving at similar to 3 x 10(4) km s(-1). Assuming a constant mass loss from the stellar progenitor, we find that the mass-loss rate is (M)over dot approximate to 1.4 x 10(-4) M-circle dot yr(-1) for an assumed wind velocity of 1000 km s(-1). The temporal evolution of the radio emission suggests a radial CSM density structure steeper than the standard r(-2).
  •  
4.
  • Karambelkar, Viraj R., et al. (författare)
  • Faintest of Them All : ZTF 21aaoryiz/SN 2021fcg-Discovery of an Extremely Low Luminosity Type Iax Supernova
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 921:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery of ZTF 21aaoryiz/SN 2021fcg-an extremely low luminosity Type Tax supernova. SN 2021fcg was discovered by the Zwicky Transient Facility in the star-forming galaxy IC0512 at a distance of approximate to 27 Mpc. It reached a peak absolute magnitude of M-r = -12.66 +/- 0.20 mag, making it the least luminous thermonuclear supernova discovered to date. The E(B - V) contribution from the underlying host galaxy is unconstrained. However, even if it were as large as 0.5 mag, the peak absolute magnitude would be M-r = -13.78 +/- 0.20 mag-still consistent with being the lowest-luminosity SN. Optical spectra of SN 2021fcg taken at 37 and 65 days post-maximum show strong [Ca II], Ca II, and Na I D emission and several weak [Fe II] emission lines. The [Ca II] emission in the two spectra has extremely low velocities of approximate to 1300 and 1000 km s(-1), respectively. The spectra very closely resemble those of the very low luminosity Type Tax supernovae SN 2008 ha, SN 2010ae, and SN 2019gsc taken at similar phases. The peak bolometric luminosity of SN 2021fcg is approximate to 2.5(-0.3)(+1.5) x 10(40) erg s(-1), which is a factor of 3 lower than that for SN 2008 ha. The bolometric lightcurve of SN 2021fcg is consistent with a very low ejected nickel mass (M-Ni approximate to 0.8(-0.5)(+0.4) x 10(-3) M-circle dot). The low luminosity and nickel mass of SN 2021fcg pose a challenge to the picture that low-luminosity SNe Tax originate from deflagrations of near-M-ch hybrid carbon-oxygen-neon white dwarfs. Instead, the merger of a carbon-oxygen and oxygen-neon white dwarf is a promising model to explain SN 2021fcg.
  •  
5.
  • Reusch, Simeon, et al. (författare)
  • Candidate Tidal Disruption Event AT2019fdr Coincident with a High-Energy Neutrino
  • 2022
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 128:22
  • Tidskriftsartikel (refereegranskat)abstract
    • The origins of the high-energy cosmic neutrino flux remain largely unknown. Recently, one high-energy neutrino was associated with a tidal disruption event (TDE). Here we present AT2019fdr, an exceptionally luminous TDE candidate, coincident with another high-energy neutrino. Our observations, including a bright dust echo and soft late-time x-ray emission, further support a TDE origin of this flare. The probability of finding two such bright events by chance is just 0.034%. We evaluate several models for neutrino production and show that AT2019fdr is capable of producing the observed high-energy neutrino, reinforcing the case for TDEs as neutrino sources.
  •  
6.
  • Soumagnac, Maayane T., et al. (författare)
  • Early Ultraviolet Observations of Type IIn Supernovae Constrain the Asphericity of Their Circumstellar Material
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 899:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a survey of the early evolution of 12 Type IIn supernovae (SNe IIn) at ultraviolet and visible light wavelengths. We use this survey to constrain the geometry of the circumstellar material (CSM) surrounding SN IIn explosions, which may shed light on their progenitor diversity. In order to distinguish between aspherical and spherical CSM, we estimate the blackbody radius temporal evolution of the SNe IIn of our sample, following the method introduced by Soumagnac et al. We find that higher-luminosity objects tend to show evidence for aspherical CSM. Depending on whether this correlation is due to physical reasons or to some selection bias, we derive a lower limit between 35% and 66% for the fraction of SNe IIn showing evidence for aspherical CSM. This result suggests that asphericity of the CSM surrounding SNe IIn is common-consistent with data from resolved images of stars undergoing considerable mass loss. It should be taken into account for more realistic modeling of these events.
  •  
7.
  • Soumagnac, Maayane T., et al. (författare)
  • SN 2018fif : The Explosion of a Large Red Supergiant Discovered in Its Infancy by the Zwicky Transient Facility
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 902:1
  • Tidskriftsartikel (refereegranskat)abstract
    • High-cadence transient surveys are able to capture supernovae closer to their first light than ever before. Applying analytical models to such early emission, we can constrain the progenitor stars' properties. In this paper, we present observations of SN 2018fif (ZTF 18abokyfk). The supernova was discovered close to first light and monitored by the Zwicky Transient Facility (ZTF) and the Neil Gehrels Swift Observatory. Early spectroscopic observations suggest that the progenitor of SN 2018fif was surrounded by relatively small amounts of circumstellar material compared to all previous cases. This particularity, coupled with the high-cadence multiple-band coverage, makes it a good candidate to investigate using shock-cooling models. We employ the SOPRANOS code, an implementation of the model by Sapir & Waxman and its extension to early times by Morag et al. Compared with previous implementations, SOPRANOS has the advantage of including a careful account of the limited temporal validity domain of the shock-cooling model as well as allowing usage of the entirety of the early UV data. We find that the progenitor of SN 2018fif was a large red supergiant with a radius of R = 744.0(-128.0)(+183.0) R-circle dot and an ejected mass of M-ej = 9.3(-5.8)(+0.4) M-circle dot. Our model also gives information on the explosion epoch, the progenitor's inner structure, the shock velocity, and the extinction. The distribution of radii is double-peaked, with smaller radii corresponding to lower values of the extinction, earlier recombination times, and a better match to the early UV data. If these correlations persist in future objects, denser spectroscopic monitoring constraining the time of recombination, as well as accurate UV observations (e.g., with ULTRASAT), will help break the extinction/radius degeneracy and independently determine both.
  •  
8.
  • Stein, Robert, et al. (författare)
  • A tidal disruption event coincident with a high-energy neutrino
  • 2021
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; :5, s. 510-518
  • Tidskriftsartikel (refereegranskat)abstract
    • Cosmic neutrinos provide a unique window into the otherwise hidden mechanism of particle acceleration in astrophysical objects. The IceCube Collaboration recently reported the likely association of one high-energy neutrino with a flare from the relativistic jet of an active galaxy pointed towards the Earth. However a combined analysis of many similar active galaxies revealed no excess from the broader population, leaving the vast majority of the cosmic neutrino flux unexplained. Here we present the likely association of a radio-emitting tidal disruption event, AT2019dsg, with a second high-energy neutrino. AT2019dsg was identified as part of our systematic search for optical counterparts to high-energy neutrinos with the Zwicky Transient Facility. The probability of finding any coincident radio-emitting tidal disruption event by chance is 0.5%, while the probability of finding one as bright in bolometric energy flux as AT2019dsg is 0.2%. Our electromagnetic observations can be explained through a multizone model, with radio analysis revealing a central engine, embedded in a UV photosphere, that powers an extended synchrotron-emitting outflow. This provides an ideal site for petaelectronvolt neutrino production. Assuming that the association is genuine, our observations suggest that tidal disruption events with mildly relativistic outflows contribute to the cosmic neutrino flux. The tidal disruption event AT2019dsg is probably associated with a high-energy neutrino, suggesting that such events can contribute to the cosmic neutrino flux. The electromagnetic emission is explained in terms of a central engine, a photosphere and an extended synchrotron-emitting outflow.
  •  
9.
  • van Velzen, Sjoert, et al. (författare)
  • The First Tidal Disruption Flare in ZTF : From Photometric Selection to Multi-wavelength Characterization
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 872:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Zwicky Transient Facility (ZTF) observations of the tidal disruption flare AT2018zr/PS18kh reported by Holoien et al. and detected during ZTF commissioning. The ZTF light curve of the tidal disruption event (TDE) samples the rise-to-peak exceptionally well, with 50. days of g- and r-band detections before the time of maximum light. We also present our multi-wavelength follow-up observations, including the detection of a thermal (kT approximate to 100 eV) X-ray source that is two orders of magnitude fainter than the contemporaneous optical/UV blackbody luminosity, and a stringent upper limit to the radio emission. We use observations of 128 known active galactic nuclei (AGNs) to assess the quality of the ZTF astrometry, finding a median host-flare distance of 0.'' 2 for genuine nuclear flares. Using ZTF observations of variability from known AGNs and supernovae we show how these sources can be separated from TDEs. A combination of light-curve shape, color, and location in the host galaxy can be used to select a clean TDE sample from multi-band optical surveys such as ZTF or the Large Synoptic Survey Telescope.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy