SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ripple D) "

Sökning: WFRF:(Ripple D)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Sandom, C. J., et al. (författare)
  • Learning from the past to prepare for the future: felids face continued threat from declining prey
  • 2018
  • Ingår i: Ecography. - : Wiley. - 0906-7590. ; 41:1, s. 140-152
  • Tidskriftsartikel (refereegranskat)abstract
    • Many contemporary species of large-felids (>= 15 kg) feed upon prey that are endangered, raising concern that prey population declines (defaunation) will further threaten felids. We assess the threat that defaunation presents by investigating a late Quaternary (LQ), 'present-natural' counterfactual scenario. Our present-natural counterfactual is based on predicted ranges of mammals today in the absence of any impacts of modern humans Homo sapiens through time. Data from our present-natural counterfactual are used to understand firstly how megafauna extinction has impacted felid communities to date and secondly to quantify the threat to large-felid communities posed by further declines in prey richness in the future. Our purpose is to identify imminent risks to biodiversity conservation and their cascading consequences and, specifically, to indicate the importance of preserving prey diversity. We pursue two lines of enquiry; first, we test whether the loss of prey species richness is a potential cause of large-felid extinction and range loss. Second, we explore what can be learnt from the large-scale large-mammal LQ losses, particularly in the Americas and Europe, to assess the threat any further decline in prey species presents to large-felids today, particularly in Africa and Asia. Large-felid species richness was considerably greater under our present-natural counterfactual scenario compared to the current reality. In total, 86% of cells recorded at least one additional felid species in our present-natural counterfactual, and up to 4-5 more large-felid species in 10% of the cells. A significant positive correlation was recorded between the number of prey species lost and the number of large-felid species lost from a cell. Extant felids most at risk include lion and Sunda clouded leopard, as well as leopard and cheetah in parts of their range. Our results draw attention to the continuation of a trend of megafauna decline that began with the emergence of hominins in the Pleistocene.
  •  
3.
  •  
4.
  • Estes, James A., et al. (författare)
  • Trophic Downgrading of Planet Earth
  • 2011
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 333:6040, s. 301-306
  • Forskningsöversikt (refereegranskat)abstract
    • Until recently, large apex consumers were ubiquitous across the globe and had been for millions of years. The loss of these animals may be humankind's most pervasive influence on nature. Although such losses are widely viewed as an ethical and aesthetic problem, recent research reveals extensive cascading effects of their disappearance in marine, terrestrial, and freshwater ecosystems worldwide. This empirical work supports long-standing theory about the role of top-down forcing in ecosystems but also highlights the unanticipated impacts of trophic cascades on processes as diverse as the dynamics of disease, wildfire, carbon sequestration, invasive species, and biogeochemical cycles. These findings emphasize the urgent need for interdisciplinary research to forecast the effects of trophic downgrading on process, function, and resilience in global ecosystems.
  •  
5.
  • Ripple, William J., et al. (författare)
  • Status and Ecological Effects of the World's Largest Carnivores
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 343:6167, s. 151-
  • Forskningsöversikt (refereegranskat)abstract
    • Large carnivores face serious threats and are experiencing massive declines in their populations and geographic ranges around the world. We highlight how these threats have affected the conservation status and ecological functioning of the 31 largest mammalian carnivores on Earth. Consistent with theory, empirical studies increasingly show that large carnivores have substantial effects on the structure and function of diverse ecosystems. Significant cascading trophic interactions, mediated by their prey or sympatric mesopredators, arise when some of these carnivores are extirpated from or repatriated to ecosystems. Unexpected effects of trophic cascades on various taxa and processes include changes to bird, mammal, invertebrate, and herpetofauna abundance or richness; subsidies to scavengers; altered disease dynamics; carbon sequestration; modified stream morphology; and crop damage. Promoting tolerance and coexistence with large carnivores is a crucial societal challenge that will ultimately determine the fate of Earth's largest carnivores and all that depends upon them, including humans.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy