SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rodríguez Antona Cristina) ;pers:(Robledo Mercedes)"

Sökning: WFRF:(Rodríguez Antona Cristina) > Robledo Mercedes

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Apellániz-Ruiz, Maria, et al. (författare)
  • Targeted sequencing reveals low-frequency variants in EPHA genes as markers of paclitaxel-induced peripheral neuropathy.
  • 2017
  • Ingår i: Clinical Cancer Research. - : American Association of Cancer Research. - 1078-0432 .- 1557-3265. ; 23:5, s. 1227-1235
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Neuropathy is the dose limiting toxicity of paclitaxel and a major cause for decreased quality of life. Genetic factors have been shown to contribute to paclitaxel neuropathy susceptibility; however, the major causes for inter-individual differences remain unexplained. In this study we identified genetic markers associated with paclitaxel-induced neuropathy through massive sequencing of candidate genes.EXPERIMENTAL DESIGN: We sequenced the coding region of 4 EPHA genes, 5 genes involved in paclitaxel pharmacokinetics and 30 Charcot-Marie-Tooth genes, in 228 cancer patients with no/low neuropathy or high grade neuropathy during paclitaxel treatment. An independent validation series included 202 paclitaxel-treated patients. Variation-/ gene-based analyses were used to compare variant frequencies among neuropathy groups and Cox regression models were used to analyze neuropathy evolution along treatment.RESULTS: Gene-based analysis identified EPHA6 as the gene most significantly associated with paclitaxel-induced neuropathy. Low frequency non-synonymous variants in EPHA6 were present exclusively in patients with high neuropathy and all affected the ligand binding domain. Accumulated dose analysis in the discovery series showed a significantly higher neuropathy risk for EPHA5/6/8 low-frequency non-synonymous variant carriers (HR=14.60, 95%CI=2.33-91.62, P=0.0042) and an independent cohort confirmed an increased neuropathy risk (HR=2.07, 95%CI=1.14-3.77, P=0.017). Combining the series gave an estimated 2.50-fold higher risk of neuropathy (95%CI=1.46-4.31; P=9.1x10(-4)).CONCLUSION: This first study sequencing EPHA genes revealed that low frequency variants in EPHA6, EPHA5 and EPHA8 contribute to the susceptibility to paclitaxel-induced neuropathy. Furthermore, EPHAs neuronal injury repair function suggests that these genes might constitute important neuropathy markers for many neurotoxic drugs.
  •  
2.
  • Leandro-Garcia, Luis J., et al. (författare)
  • Genome-wide association study identifies ephrin type A receptors implicated in paclitaxel induced peripheral sensory neuropathy
  • 2013
  • Ingår i: Journal of Medical Genetics. - : BMJ Publishing Group Ltd. - 0022-2593 .- 1468-6244. ; 50:9, s. 599-605
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Peripheral neuropathy is the dose limiting toxicity of paclitaxel, a chemotherapeutic drug widely used to treat solid tumours. This toxicity exhibits great inter-individual variability of unknown origin. The present study aimed to identify genetic variants associated with paclitaxel induced neuropathy via a whole genome approach. less thanbrgreater than less thanbrgreater thanMethods A genome-wide association study (GWAS) was performed in 144 white European patients uniformly treated with paclitaxel/carboplatin and for whom detailed data on neuropathy was available. Per allele single nucleotide polymorphism (SNP) associations were assessed by Cox regression, modelling the cumulative dose of paclitaxel up to the development of grade 2 sensory neuropathy. less thanbrgreater than less thanbrgreater thanResults The strongest evidence of association was observed for the ephrin type A receptor 4 (EPHA4) locus (rs17348202, p=1.0x10(-6)), and EPHA6 and EPHA5 were among the top 25 and 50 hits (rs301927, p=3.4x10(-5) and rs1159057, p=6.8x10(-5)), respectively. A meta-analysis of EPHA5-rs7349683, the top marker for paclitaxel induced neuropathy in a previous GWAS (r(2)=0.79 with rs1159057), gave a hazard ratio (HR) estimate of 1.68 (p=1.4x10(-9)). Meta-analysis of the second hit of this GWAS, XKR4-rs4737264, gave a HR of 1.71 (p=3.1x10(-8)). Imputed SNPs at LIMK2 locus were also strongly associated with this toxicity (HR=2.78, p=2.0x10(-7)). less thanbrgreater than less thanbrgreater thanConclusions This study provides independent support of EPHA5-rs7349683 and XKR4-rs4737264 as the first markers of risk of paclitaxel induced neuropathy. In addition, it suggests that other EPHA genes also involved in axonal guidance and repair following neural injury, as well as LIMK2 locus, may play an important role in the development of this toxicity. The identified SNPs could form the basis for individualised paclitaxel chemotherapy.
  •  
3.
  • Leandro-Garcia, Luis J., et al. (författare)
  • Regulatory Polymorphisms in beta-Tubulin IIa Are Associated with Paclitaxel-Induced Peripheral Neuropathy
  • 2012
  • Ingår i: Clinical Cancer Research. - : American Association for Cancer Research. - 1078-0432 .- 1557-3265. ; 18:16, s. 4441-4448
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Peripheral neuropathy is the dose-limiting toxicity of paclitaxel, a chemotherapeutic drug widely used to treat several solid tumors such as breast, lung, and ovary. The cytotoxic effect of paclitaxel is mediated through beta-tubulin binding in the cellular microtubules. In this study, we investigated the association between paclitaxel neurotoxicity risk and regulatory genetic variants in beta-tubulin genes. Experimental Design: We measured variation in gene expression of three beta-tubulin isotypes (I, IVb, and IIa) in lymphocytes from 100 healthy volunteers, sequenced the promoter region to identify polymorphisms putatively influencing gene expression and assessed the transcription rate of the identified variants using luciferase assays. To determine whether the identified regulatory polymorphisms were associated with paclitaxel neurotoxicity, we genotyped them in 214 patients treated with paclitaxel. In addition, paclitaxel-induced cytotoxicity in lymphoblastoid cell lines was compared with beta-tubulin expression as measured by Affymetrix exon array. Results: We found a 63-fold variation in beta-tubulin IIa gene (TUBB2A) mRNA content and three polymorphisms located at -101, -112, and -157 in TUBB2A promoter correlated with increased mRNA levels. The -101 and -112 variants, in total linkage disequilibrium, conferred TUBB2A increased transcription rate. Furthermore, these variants protected from paclitaxel-induced peripheral neuropathy [HR, 0.62; 95% confidence interval (CI), 0.42-0.93; P = 0.021, multivariable analysis]. In addition, an inverse correlation between TUBB2A and paclitaxel-induced apoptosis (P = 0.001) in lymphoblastoid cell lines further supported that higher TUBB2A gene expression conferred lower paclitaxel sensitivity. Conclusions: This is the first study showing that paclitaxel neuropathy risk is influenced by polymorphisms regulating the expression of a beta-tubulin gene.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy