SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rorsman Patrik) ;pers:(Bengtsson Martin)"

Sökning: WFRF:(Rorsman Patrik) > Bengtsson Martin

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bengtsson, Martin, et al. (författare)
  • Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels.
  • 2005
  • Ingår i: Genome Research. - : Cold Spring Harbor Laboratory. - 1549-5469 .- 1088-9051. ; 15:10, s. 1388-1392
  • Tidskriftsartikel (refereegranskat)abstract
    • The transcriptional machinery in individual cells is controlled by a relatively small number of molecules, which may result in stochastic behavior in gene activity. Because of technical limitations in current collection and recording methods, most gene expression measurements are carried out on populations of cells and therefore reflect average mRNA levels. The variability of the transcript levels between different cells remains undefined, although it may have profound effects on cellular activities. Here we have measured gene expression levels of the five genes ActB, Ins1, Ins2, Abcc8, and Kcnj11 in individual cells from mouse pancreatic islets. Whereas Ins1 and Ins2 expression show a strong cell-cell correlation, this is not the case for the other genes. We further found that the transcript levels of the different genes are lognormally distributed. Hence, the geometric mean of expression levels provides a better estimate of gene activity of the typical cell than does the arithmetic mean measured on a cell population.
  •  
2.
  •  
3.
  • De Marinis, Yang, et al. (författare)
  • GLP-1 inhibits and adrenaline stimulates glucagon release by differential modulation of N- and L-type Ca2+ channel-dependent exocytosis.
  • 2010
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131. ; 11:6, s. 543-553
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucagon secretion is inhibited by glucagon-like peptide-1 (GLP-1) and stimulated by adrenaline. These opposing effects on glucagon secretion are mimicked by low (1-10 nM) and high (10 muM) concentrations of forskolin, respectively. The expression of GLP-1 receptors in alpha cells is <0.2% of that in beta cells. The GLP-1-induced suppression of glucagon secretion is PKA dependent, is glucose independent, and does not involve paracrine effects mediated by insulin or somatostatin. GLP-1 is without much effect on alpha cell electrical activity but selectively inhibits N-type Ca(2+) channels and exocytosis. Adrenaline stimulates alpha cell electrical activity, increases [Ca(2+)](i), enhances L-type Ca(2+) channel activity, and accelerates exocytosis. The stimulatory effect is partially PKA independent and reduced in Epac2-deficient islets. We propose that GLP-1 inhibits glucagon secretion by PKA-dependent inhibition of the N-type Ca(2+) channels via a small increase in intracellular cAMP ([cAMP](i)). Adrenaline stimulates L-type Ca(2+) channel-dependent exocytosis by activation of the low-affinity cAMP sensor Epac2 via a large increase in [cAMP](i).
  •  
4.
  • Jeans, Alexander F., et al. (författare)
  • A dominant mutation in Snap25 causes impaired vesicle trafficking, sensorimotor gating, and ataxia in the blind-drunk mouse
  • 2007
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 104:7, s. 2431-2436
  • Tidskriftsartikel (refereegranskat)abstract
    • The neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex is essential for synaptic vesicle exocytosis, but its study has been limited by the neonatal lethality of murine SNARE knockouts. Here, we describe a viable mouse line carrying a mutation in the b-isoform of neuronal SNARE synaptosomal-associated protein of 25 kDa (SNAP-25) The causative I67T missense mutation results in increased binding affinities within the SNARE complex, impaired exocytotic vesicle recycling and granule exocytosis in pancreatic beta-cells, and a reduction in the amplitude of evoked cortical excitatory postsynaptic potentials. The mice also display ataxia and impaired sensorimotor gating, a phenotype which has been associated with psychiatric disorders in humans. These studies therefore provide insights into the role of the SNARE complex in both diabetes and psychiatric disease.
  •  
5.
  • Olofsson, Charlotta, et al. (författare)
  • Long-term exposure to glucose and lipids inhibits glucose-induced insulin secretion downstream of granule fusion with plasma membrane.
  • 2007
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 56:7, s. 1888-1897
  • Tidskriftsartikel (refereegranskat)abstract
    • Mouse beta-cells cultured at 15 mmol/l glucose for 72 h had reduced ATP-sensitive K+ (K-ATP) channel activity (-30%), increased voltage-gated Ca2+ currents, higher intracellular free Ca2+ concentration ([Ca-i(2+]) +160%), more exocytosis (monitored by capacitance measurements, +100%), and greater insulin content (+230%) than those cultured at 4.5 mmol/l glucose. However, they released 20% less insulin when challenged with 20 mmol/l glucose. Glucose-induced (20 mmol/l) insulin secretion was reduced by 60-90% in islets cocultured at 4.5 or 15 mmol/l glucose and either oleate or palmitate (0.5 mmol/l). Free fatty acid (FFA)induced inhibition of secretion was not associated with any major changes in [Ca2+](i) or islet ATP content. Palmitate stimulated exocytosis by twofold or more but reduced V-induced secretion by up to 60%. Basal (1 mmol/l glucose) K-ATP channel activity was 40% lower in islets cultured at 4.5 mmol/l glucose plus palmitate and 60% lower in islets cultured at 15 mmol/l glucose plus either of the FFAs. Insulin content decreased by 75% in islets exposed to FFAs in the presence of high (15 mmol/l), but not low (4.5 mmol/l), glucose concentrations, but the number of secre tory granules was unchanged. FFA-induced inhibition of insulin secretion was not associated with increased tran script levels of the apoptosis markers Bax (BclII-associated X protein) and caspase-3. We conclude that glucose and FFAs reduce insulin secretion by interference with the exit of insulin via the fusion pore.
  •  
6.
  • Olofsson, Charlotta S, 1971, et al. (författare)
  • Impaired insulin exocytosis in neural cell adhesion molecule-/- mice due to defective reorganization of the submembrane F-actin network.
  • 2009
  • Ingår i: Endocrinology. - : The Endocrine Society. - 1945-7170 .- 0013-7227. ; 150:7, s. 3067-75
  • Tidskriftsartikel (refereegranskat)abstract
    • The neural cell adhesion molecule (NCAM) is required for cell type segregation during pancreatic islet organogenesis. We have investigated the functional consequences of ablating NCAM on pancreatic beta-cell function. In vivo, NCAM(-/-) mice exhibit impaired glucose tolerance and basal hyperinsulinemia. Insulin secretion from isolated NCAM(-/-) islets is enhanced at glucose concentrations below 15 mM but inhibited at higher concentrations. Glucagon secretion from pancreatic alpha-cells evoked by low glucose was also severely impaired in NCAM(-/-) islets. The diminution of insulin secretion is not attributable to defective glucose metabolism or glucose sensing (documented as glucose-induced changes in intracellular Ca(2+) and K(ATP)-channel activity). Resting K(ATP) conductance was lower in NCAM(-/-) beta-cells than wild-type cells, and this difference was abolished when F-actin was disrupted by cytochalasin D (1 muM). In wild-type beta-cells, the submembrane actin network disassembles within 10 min during glucose stimulation (30 mM), an effect not seen in NCAM(-/-) beta-cells. Cytochalasin D eliminated this difference and normalized insulin and glucagon secretion in NCAM(-/-) islets. Capacitance measurements of exocytosis indicate that replenishment of the readily releasable granule pool is suppressed in NCAM(-/-) alpha- and beta-cells. Our data suggest that remodeling of the submembrane actin network is critical to normal glucose regulation of both insulin and glucagon secretion.
  •  
7.
  • Zhang, Quan, et al. (författare)
  • R-type Ca2+-channel-evoked CICR regulates glucose-induced somatostatin secretion
  • 2007
  • Ingår i: Nature Cell Biology. - : Springer Science and Business Media LLC. - 1465-7392 .- 1476-4679. ; 9:4, s. 171-453
  • Tidskriftsartikel (refereegranskat)abstract
    • Pancreatic islets have a central role in blood glucose homeostasis. In addition to insulin-producing beta-cells and glucagon-secreting alpha-cells, the islets contain somatostatin-releasing delta-cells(1). Somatostatin is a powerful inhibitor of insulin and glucagon secretion(2). It is normally secreted in response to glucose(3) and there is evidence suggesting its release becomes perturbed in diabetes(4). Little is known about the control of somatostatin release. Closure of ATP-regulated K+-channels (K-ATP-channels)(5) and a depolarization-evoked increase in cytoplasmic free Ca2+ concentration ([Ca2+](i))(6-8) have been proposed to be essential. Here, we report that somatostatin release evoked by high glucose (>= 10 mM) is unaffected by the K-ATP-channel activator diazoxide and proceeds normally in K-ATP-channel-deficient islets. Glucose-induced somatostatin secretion is instead primarily dependent on Ca2+-induced Ca2+-release (CICR). This constitutes a novel mechanism for K-ATP-channel-independent metabolic control of pancreatic hormone secretion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy