SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ross Owen A) ;pers:(Singleton Andrew)"

Search: WFRF:(Ross Owen A) > Singleton Andrew

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Dewan, Ramita, et al. (author)
  • Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis.
  • 2021
  • In: Neuron. - : Elsevier BV. - 1097-4199 .- 0896-6273. ; 109:3, s. 448-460.e4
  • Journal article (peer-reviewed)abstract
    • We examined the role of repeat expansions in the pathogenesis of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) by analyzing whole-genome sequence data from 2,442 FTD/ALS patients, 2,599 Lewy body dementia (LBD) patients, and 3,158 neurologically healthy subjects. Pathogenic expansions (range, 40-64 CAG repeats) in the huntingtin (HTT) gene were found in three (0.12%) patients diagnosed with pure FTD/ALS syndromes but were not present in the LBD or healthy cohorts. We replicated our findings in an independent collection of 3,674 FTD/ALS patients. Postmortem evaluations of two patients revealed the classical TDP-43 pathology of FTD/ALS, as well as huntingtin-positive, ubiquitin-positive aggregates in the frontal cortex. The neostriatal atrophy that pathologically defines Huntington's disease was absent in both cases. Our findings reveal an etiological relationship between HTT repeat expansions and FTD/ALS syndromes and indicate that genetic screening of FTD/ALS patients for HTT repeat expansions should be considered.
  •  
2.
  • Sailer, Anna, et al. (author)
  • A genome-wide association study in multiple system atrophy
  • 2016
  • In: Neurology. - 0028-3878. ; 87:15, s. 1591-1598
  • Journal article (peer-reviewed)abstract
    • Objective: To identify genetic variants that play a role in the pathogenesis of multiple system atrophy (MSA), we undertook a genome-wide association study (GWAS). Methods: We performed a GWAS with >5 million genotyped and imputed single nucleotide polymorphisms (SNPs) in 918 patients with MSA of European ancestry and 3,864 controls. MSA cases were collected from North American and European centers, one third of which were neuropathologically confirmed. Results: We found no significant loci after stringent multiple testing correction. A number of regions emerged as potentially interesting for follow-up at p < 1 × 10-6, including SNPs in the genes FBXO47, ELOVL7, EDN1, and MAPT. Contrary to previous reports, we found no association of the genes SNCA and COQ2 with MSA. Conclusions: We present a GWAS in MSA. We have identified several potentially interesting gene loci, including the MAPT locus, whose significance will have to be evaluated in a larger sample set. Common genetic variation in SNCA and COQ2 does not seem to be associated with MSA. In the future, additional samples of well-characterized patients with MSA will need to be collected to perform a larger MSA GWAS, but this initial study forms the basis for these next steps.
  •  
3.
  • Anderson, Christopher D., et al. (author)
  • Common Variants Within Oxidative Phosphorylation Genes Influence Risk of Ischemic Stroke and Intracerebral Hemorrhage
  • 2013
  • In: Stroke: a journal of cerebral circulation. - 1524-4628. ; 44:3, s. 612-619
  • Journal article (peer-reviewed)abstract
    • Background and Purpose-Previous studies demonstrated association between mitochondrial DNA variants and ischemic stroke (IS). We investigated whether variants within a larger set of oxidative phosphorylation (OXPHOS) genes encoded by both autosomal and mitochondrial DNA were associated with risk of IS and, based on our results, extended our investigation to intracerebral hemorrhage (ICH). Methods-This association study used a discovery cohort of 1643 individuals, a validation cohort of 2432 individuals for IS, and an extension cohort of 1476 individuals for ICH. Gene-set enrichment analysis was performed on all structural OXPHOS genes, as well as genes contributing to individual respiratory complexes. Gene-sets passing gene-set enrichment analysis were tested by constructing genetic scores using common variants residing within each gene. Associations between each variant and IS that emerged in the discovery cohort were examined in validation and extension cohorts. Results-IS was associated with genetic risk scores in OXPHOS as a whole (odds ratio [OR], 1.17; P=0.008) and complex I (OR, 1.06; P=0.050). Among IS subtypes, small vessel stroke showed association with OXPHOS (OR, 1.16; P=0.007), complex I (OR, 1.13; P=0.027), and complex IV (OR, 1.14; P=0.018). To further explore this small vessel association, we extended our analysis to ICH, revealing association between deep hemispheric ICH and complex IV (OR, 1.08; P=0.008). Conclusions-This pathway analysis demonstrates association between common genetic variants within OXPHOS genes and stroke. The associations for small vessel stroke and deep ICH suggest that genetic variation in OXPHOS influences small vessel pathobiology. Further studies are needed to identify culprit genetic variants and assess their functional consequences. (Stroke. 2013;44:612-619.)
  •  
4.
  • Bras, Jose, et al. (author)
  • Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies.
  • 2014
  • In: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 23:23, s. 6139-6146
  • Journal article (peer-reviewed)abstract
    • Clinical and neuropathological similarities between dementia with Lewy bodies (DLB), Parkinson's and Alzheimer's diseases (PD and AD, respectively) suggest that these disorders may share etiology. To test this hypothesis, we have performed an association study of 54 genomic regions, previously implicated in PD or AD, in a large cohort of DLB cases and controls. The cohort comprised 788 DLB cases and 2624 controls. To minimize the issue of potential misdiagnosis, we have also performed the analysis including only neuropathologically proven DLB cases (667 cases). The results show that the APOE is a strong genetic risk factor for DLB, confirming previous findings, and that the SNCA and SCARB2 loci are also associated after a study-wise Bonferroni correction, although these have a different association profile than the associations reported for the same loci in PD. We have previously shown that the p.N370S variant in GBA is associated with DLB, which, together with the findings at the SCARB2 locus, suggests a role for lysosomal dysfunction in this disease. These results indicate that DLB has a unique genetic risk profile when compared with the two most common neurodegenerative diseases and that the lysosome may play an important role in the etiology of this disorder. We make all these data available.
  •  
5.
  • Guerreiro, Rita, et al. (author)
  • Genome-wide analysis of genetic correlation in dementia with Lewy bodies, Parkinson's and Alzheimer's diseases.
  • 2016
  • In: Neurobiology of Aging. - : Elsevier BV. - 1558-1497 .- 0197-4580. ; 38, s. 7-214
  • Journal article (peer-reviewed)abstract
    • The similarities between dementia with Lewy bodies (DLB) and both Parkinson's disease (PD) and Alzheimer's disease (AD) are many and range from clinical presentation, to neuropathological characteristics, to more recently identified, genetic determinants of risk. Because of these overlapping features, diagnosing DLB is challenging and has clinical implications since some therapeutic agents that are applicable in other diseases have adverse effects in DLB. Having shown that DLB shares some genetic risk with PD and AD, we have now quantified the amount of sharing through the application of genetic correlation estimates, and show that, from a purely genetic perspective, and excluding the strong association at the APOE locus, DLB is equally correlated to AD and PD.
  •  
6.
  • Kun-Rodrigues, Celia, et al. (author)
  • A comprehensive screening of copy number variability in dementia with Lewy bodies.
  • 2019
  • In: Neurobiology of aging. - : Elsevier BV. - 1558-1497 .- 0197-4580. ; 75
  • Journal article (peer-reviewed)abstract
    • The role of genetic variability in dementia with Lewy bodies (DLB) is now indisputable; however, data regarding copy number variation (CNV) in this disease has been lacking. Here, we used whole-genome genotyping of 1454 DLB cases and 1525 controls to assess copy number variability. We used 2 algorithms to confidently detect CNVs, performed a case-control association analysis, screened for candidate CNVs previously associated with DLB-related diseases, and performed a candidate gene approach to fully explore the data. We identified 5 CNV regions with a significant genome-wide association to DLB; 2 of these were only present in cases and absent from publicly available databases: one of the regions overlapped LAPTM4B, a known lysosomal protein, whereas the other overlapped the NME1 locus and SPAG9. We also identified DLB cases presenting rare CNVs in genes previously associated with DLB or related neurodegenerative diseases, such as SNCA, APP, and MAPT. To our knowledge, this is the first study reporting genome-wide CNVs in a large DLB cohort. These results provide preliminary evidence for the contribution of CNVs in DLB risk.
  •  
7.
  • Kun-Rodrigues, Celia, et al. (author)
  • Analysis of C9orf72 repeat expansions in a large international cohort of dementia with Lewy bodies
  • 2017
  • In: Neurobiology of Aging. - : Elsevier BV. - 0197-4580 .- 1558-1497. ; 49
  • Journal article (peer-reviewed)abstract
    • . C9orf72 repeat expansions are a common cause of amyotrophic lateral sclerosis and frontotemporal dementia. To date, no large-scale study of dementia with Lewy bodies (DLB) has been undertaken to assess the role of . C9orf72 repeat expansions in the disease. Here, we investigated the prevalence of . C9orf72 repeat expansions in a large cohort of DLB cases and identified no pathogenic repeat expansions in neuropathologically or clinically defined cases, showing that . C9orf72 repeat expansions are not causally associated with DLB.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view