SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rothwell PM) "

Sökning: WFRF:(Rothwell PM)

  • Resultat 1-10 av 27
  • [1]23Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Malik, R., et al. (författare)
  • Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes
  • 2018
  • Ingår i: Nature Genetics. - : NATURE PUBLISHING GROUP. - 1061-4036 .- 1546-1718. ; 50:D, Munich, Germany. [Chauhan, Ganesh] Indian Inst Sci, Ctr Brain Res, Bangalore, Karnataka, India. [Chauhan, Ganesh; Sargurupremraj, Muralidharan; Mishra, Aniket; Tzourio, Christophe; Debette, [Traylor, Matthew; Rutten-Jacobs, Loes; Markus, Hugh S.] Univ Cambridge, Div Clin Neurosci, Stroke [Sargurupremraj, Muralidharan; Mishra, Aniket; Debette, Stephanie] Bordeaux Univ Hosp, Inst [Okada, Yukinori; Kanai, Masahiro; Kamatani, Yoichiro] RIKEN Ctr Integrat Med Sci, Lab Stat Anal, [Okada, Yukinori; Kanai, Masahiro; Sakaue, Saori] Osaka Univ, Grad Sch Med, Dept Stat Genet, Osaka, [Okada, Yukinori] Osaka Univ, Immunol Frontier Res Ctr WPI IFReC, Lab Stat Immunol, Suita, Osaka, [Giese, Anne-Katrin; Rost, Natalia S.] Harvard Med Sch, MGH, Dept Neurol, Boston, MA USA. [van der Laan, Sander W.] Univ Utrecht, Univ Med Ctr Utrecht, Div Heart & Lungs, Lab Expt Cardiol,Dept [Gretarsdottir, Solveig; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Stefansson, Kari] DeCODE Genet [Anderson, Christopher D.; Rosand, Jonathan] MGH, Ctr Genom Med, Boston, MA USA. [Anderson, Christopher D.; Ay, Hakan; Rost, Natalia S.; Rosand, Jonathan] MGH, J Philip Kistler Stroke [Anderson, Christopher D.; Rosand, Jonathan] Broad Inst, Program Med & Populat Genet, Cambridge, s. 524-
  • Tidskriftsartikel (refereegranskat)abstract
    • Stroke has multiple etiologies, but the underlying genes and pathways are largely unknown. We conducted a multiancestry genome-wide-association meta-analysis in 521,612 individuals (67,162 cases and 454,450 controls) and discovered 22 new stroke risk loci, bringing the total to 32. We further found shared genetic variation with related vascular traits, including blood pressure, cardiac traits, and venous thromboembolism, at individual loci (n = 18), and using genetic risk scores and linkage-disequilibrium-score regression. Several loci exhibited distinct association and pleiotropy patterns for etiological stroke sub-types. Eleven new susceptibility loci indicate mechanisms not previously implicated in stroke pathophysiology, with prioritization of risk variants and genes accomplished through bioinformatics analyses using extensive functional datasets. Stroke risk loci were significantly enriched in drug targets for antithrombotic therapy.
  •  
2.
  •  
3.
  •  
4.
  • Chauhan, G., et al. (författare)
  • Genetic and lifestyle risk factors for MRI-defined brain infarcts in a population-based setting
  • 2019
  • Ingår i: Neurology. - : American Academy of Neurology. - 0028-3878 .- 1526-632X. ; 92:5, s. E486-E503
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectiveTo explore genetic and lifestyle risk factors of MRI-defined brain infarcts (BI) in large population-based cohorts.MethodsWe performed meta-analyses of genome-wide association studies (GWAS) and examined associations of vascular risk factors and their genetic risk scores (GRS) with MRI-defined BI and a subset of BI, namely, small subcortical BI (SSBI), in 18 population-based cohorts (n = 20,949) from 5 ethnicities (3,726 with BI, 2,021 with SSBI). Top loci were followed up in 7 population-based cohorts (n = 6,862; 1,483 with BI, 630 with SBBI), and we tested associations with related phenotypes including ischemic stroke and pathologically defined BI.ResultsThe mean prevalence was 17.7% for BI and 10.5% for SSBI, steeply rising after age 65. Two loci showed genome-wide significant association with BI: FBN2, p = 1.77 x 10(-8); and LINC00539/ZDHHC20, p = 5.82 x 10(-9). Both have been associated with blood pressure (BP)-related phenotypes, but did not replicate in the smaller follow-up sample or show associations with related phenotypes. Age- and sex-adjusted associations with BI and SSBI were observed for BP traits (p value for BI, p([BI]) = 9.38 x 10(-25); p([SSBI]) = 5.23 x 10(-14) for hypertension), smoking (p([BI]) = 4.4 x 10(-10); p([SSBI]) = 1.2 x 10(-4)), diabetes (p([BI]) = 1.7 x 10(-8); p([SSBI]) = 2.8 x 10(-3)), previous cardiovascular disease (p([BI]) = 1.0 x 10(-18); p([SSBI]) = 2.3 x 10(-7)), stroke (p([BI]) = 3.9 x 10(-69); p([SSBI]) = 3.2 x 10(-24)), and MRI-defined white matter hyperintensity burden (p([BI]) = 1.43 x 10(-157); p([SSBI]) = 3.16 x 10(-106)), but not with body mass index or cholesterol. GRS of BP traits were associated with BI and SSBI (p 0.0022), without indication of directional pleiotropy.ConclusionIn this multiethnic GWAS meta-analysis, including over 20,000 population-based participants, we identified genetic risk loci for BI requiring validation once additional large datasets become available. High BP, including genetically determined, was the most significant modifiable, causal risk factor for BI.
  •  
5.
  •  
6.
  • Hachinski, Vladimir, et al. (författare)
  • Stroke: Working toward a Prioritized World Agenda
  • 2010
  • Ingår i: Cerebrovascular Diseases. - : Karger. - 1421-9786. ; 41:6, s. 1084-1099
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose: The aim of the Synergium was to devise and prioritize new ways of accelerating progress in reducing the risks, effects, and consequences of stroke. Methods: Preliminary work was performed by 7 working groups of stroke leaders followed by a synergium (a forum for working synergistically together) with approximately 100 additional participants. The resulting draft document had further input from contributors outside the synergium. Results: Recommendations of the Synergium are: Basic Science, Drug Development and Technology: There is a need to develop: (1) New systems of working together to break down the prevalent 'silo' mentality; (2) New models of vertically integrated basic, clinical, and epidemiological disciplines; and (3) Efficient methods of identifying other relevant areas of science. Stroke Prevention: (1) Establish a global chronic disease prevention initiative with stroke as a major focus. (2) Recognize not only abrupt clinical stroke, but subtle subclinical stroke, the commonest type of cerebrovascular disease, leading to impairments of executive function. (3) Develop, implement and evaluate a population approach for stroke prevention. (4) Develop public health communication strategies using traditional and novel (e. g., social media/marketing) techniques. Acute Stroke Management: Continue the establishment of stroke centers, stroke units, regional systems of emergency stroke care and telestroke networks. Brain Recovery and Rehabilitation: (1) Translate best neuroscience, including animal and human studies, into poststroke recovery research and clinical care. (2) Standardize poststroke rehabilitation based on best evidence. (3) Develop consensus on, then implementation of, standardized clinical and surrogate assessments. (4) Carry out rigorous clinical research to advance stroke recovery. Into the 21st Century: Web, Technology and Communications: (1) Work toward global unrestricted access to stroke-related information. (2) Build centralized electronic archives and registries. Foster Cooperation Among Stakeholders (large stroke organizations, nongovernmental organizations, governments, patient organizations and industry) to enhance stroke care. Educate and energize professionals, patients, the public and policy makers by using a 'Brain Health' concept that enables promotion of preventive measures. Conclusions: To accelerate progress in stroke, we must reach beyond the current status scientifically, conceptually, and pragmatically. Advances can be made not only by doing, but ceasing to do. Significant savings in time, money, and effort could result from discontinuing practices driven by unsubstantiated opinion, unproven approaches, and financial gain. Systematic integration of knowledge into programs coupled with careful evaluation can speed the pace of progress. Copyright (C) 2010 American Heart Association. Inc., S. Karger AG, Basel, and John Wiley & Sons, Inc.
  •  
7.
  • Hachinski, Vladimir, et al. (författare)
  • Stroke: working toward a prioritized world agenda
  • 2010
  • Ingår i: International Journal of Stroke. - : Wiley-Blackwell. - 1747-4949. ; 5:4, s. 238-256
  • Tidskriftsartikel (övrigt vetenskapligt)abstract
    • Background and Purpose The aim of the Synergium was to devise and prioritize new ways of accelerating progress in reducing the risks, effects, and consequences of stroke. Methods Preliminary work was performed by seven working groups of stroke leaders followed by a synergium (a forum for working synergistically together) with approximately 100 additional participants. The resulting draft document had further input from contributors outside the synergium. Results Recommendations of the Synergium are: Basic Science, Drug Development and Technology: There is a need to develop: (1) New systems of working together to break down the prevalent 'silo' mentality; (2) New models of vertically integrated basic, clinical, and epidemiological disciplines; and (3) Efficient methods of identifying other relevant areas of science. Stroke Prevention: (1) Establish a global chronic disease prevention initiative with stroke as a major focus. (2) Recognize not only abrupt clinical stroke, but subtle subclinical stroke, the commonest type of cerebrovascular disease, leading to impairments of executive function. (3) Develop, implement and evaluate a population approach for stroke prevention. (4) Develop public health communication strategies using traditional and novel (eg, social media/marketing) techniques. Acute Stroke Management: Continue the establishment of stroke centers, stroke units, regional systems of emergency stroke care and telestroke networks. Brain Recovery and Rehabilitation: (1) Translate best neuroscience, including animal and human studies, into poststroke recovery research and clinical care. (2) Standardize poststroke rehabilitation based on best evidence. (3) Develop consensus on, then implementation of, standardized clinical and surrogate assessments. (4) Carry out rigorous clinical research to advance stroke recovery. Into the 21st Century: Web, Technology and Communications: (1) Work toward global unrestricted access to stroke-related information. (2) Build centralized electronic archives and registries. Foster Cooperation Among Stakeholders (large stroke organizations, nongovernmental organizations, governments, patient organizations and industry) to enhance stroke care. Educate and energize professionals, patients, the public and policy makers by using a 'Brain Health' concept that enables promotion of preventive measures. Conclusions To accelerate progress in stroke, we must reach beyond the current status scientifically, conceptually, and pragmatically. Advances can be made not only by doing, but ceasing to do. Significant savings in time, money, and effort could result from discontinuing practices driven by unsubstantiated opinion, unproven approaches, and financial gain. Systematic integration of knowledge into programs coupled with careful evaluation can speed the pace of progress.
  •  
8.
  • Helgadottir, Anna, et al. (författare)
  • Apolipoprotein(a) Genetic Sequence Variants Associated With Systemic Atherosclerosis and Coronary Atherosclerotic Burden But Not With Venous Thromboembolism
  • 2012
  • Ingår i: Journal of the American College of Cardiology. - : Elsevier USA. - 0735-1097 .- 1558-3597. ; 60:8, s. 722-729
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives The purpose of this study is investigate the effects of variants in the apolipoprotein(a) gene (LPA) on vascular diseases with different atherosclerotic and thrombotic components. Background It is unclear whether the LPA variants rs10455872 and rs3798220, which correlate with lipoprotein(a) levels and coronary artery disease (CAD), confer susceptibility predominantly via atherosclerosis or thrombosis. Methods The 2 LPA variants were combined and examined as LPA scores for the association with ischemic stroke (and TOAST [Trial of Org 10172 in Acute Stroke Treatment] subtypes) (effective sample size [n(e)] = 9,396); peripheral arterial disease (n(e) = 5,215); abdominal aortic aneurysm (ne = 4,572); venous thromboembolism (ne = 4,607); intracranial aneurysm (ne = 1,328); CAD (n(e) = 12,716), carotid intima-media thickness (n = 3,714), and angiographic CAD severity (n = 5,588). Results LPA score was associated with ischemic stroke subtype large artery atherosclerosis (odds ratio [OR]: 1.27; p = 6.7 X 10(-4)), peripheral artery disease (OR: 1.47; p = 2.9 x 10(-14)), and abdominal aortic aneurysm (OR: 1.23; p = 6.0 x 10(-5)), but not with the ischemic stroke subtypes cardioembolism (OR: 1.03; p = 0.69) or small vessel disease (OR: 1.06; p = 0.52). Although the LPA variants were not associated with carotid intima-media thickness, they were associated with the number of obstructed coronary vessels (p = 4.8 x 10(-12)). Furthermore, CAD cases carrying LPA risk variants had increased susceptibility to atherosclerotic manifestations outside of the coronary tree (OR: 1.26; p = 0.0010) and had earlier onset of CAD (-1.58 years/allele; p = 8.2 x 10(-8)) than CAD cases not carrying the risk variants. There was no association of LPA score with venous thromboembolism (OR: 0.97; p = 0.63) or intracranial aneurysm (OR: 0.85; p = 0.15). Conclusions LPA sequence variants were associated with atherosclerotic burden, but not with primarily thrombotic phenotypes. (J Am Coll Cardiol 2012; 60: 722-9) (C) 2012 by the American College of Cardiology Foundation
  •  
9.
  • Markus, Hugh S, et al. (författare)
  • Stenting for symptomatic vertebral artery stenosis : The Vertebral Artery Ischaemia Stenting Trial.
  • 2017
  • Ingår i: Neurology. - 0028-3878 .- 1526-632X. ; 89:12, s. 1229-1236
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To compare in the Vertebral Artery Ischaemia Stenting Trial (VIST) the risks and benefits of vertebral angioplasty and stenting with best medical treatment (BMT) alone for symptomatic vertebral artery stenosis.METHODS: VIST was a prospective, randomized, open-blinded endpoint clinical trial performed in 14 hospitals in the United Kingdom. Participants with symptomatic vertebral stenosis ≥50% were randomly assigned (1:1) to vertebral angioplasty/stenting plus BMT or to BMT alone with randomization stratified by site of stenosis (extracranial vs intracranial). Because of slow recruitment and cessation of funding, recruitment was stopped after 182 participants. Follow-up was a minimum of ≥1 year for each participant.RESULTS: Three patients did not contribute any follow-up data and were excluded, leaving 91 patients in the stent group and 88 in the medical group. Mean follow-up was 3.5 (interquartile range 2.1-4.7) years. Of 61 patients who were stented, stenosis was extracranial in 48 (78.7%) and intracranial in 13 (21.3%). No periprocedural complications occurred with extracranial stenting; 2 strokes occurred during intracranial stenting. The primary endpoint of fatal or nonfatal stroke occurred in 5 patients in the stent group vs 12 in the medical group (hazard ratio 0.40, 95% confidence interval 0.14-1.13, p = 0.08), with an absolute risk reduction of 25 strokes per 1,000 person-years. The hazard ratio for stroke or TIA was 0.50 (p = 0.05).CONCLUSIONS: Stenting in extracranial stenosis appears safe with low complication rates. Large phase 3 trials are required to determine whether stenting reduces stroke risk.ISRCTNCOM IDENTIFIER: ISRCTN95212240.CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that for patients with symptomatic vertebral stenosis, angioplasty with stenting does not reduce the risk of stroke. However, the study lacked the precision to exclude a benefit from stenting.
  •  
10.
  • Pulit, S. L., et al. (författare)
  • Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes
  • 2018
  • Ingår i: Neurology-Genetics. - : LIPPINCOTT WILLIAMS & WILKINS. - 2376-7839. ; 4:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective We sought to assess whether genetic risk factors for atrial fibrillation (AF) can explain cardioembolic stroke risk. We evaluated genetic correlations between a previous genetic study of AF and AF in the presence of cardioembolic stroke using genome-wide genotypes from the Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and 28,026 referents). We tested whether a previously validated AF polygenic risk score (PRS) associated with cardioembolic and other stroke subtypes after accounting for AF clinical risk factors. We observed a strong correlation between previously reported genetic risk for AF, AF in the presence of stroke, and cardioembolic stroke (Pearson r = 0.77 and 0.76, respectively, across SNPs with p < 4.4 x 10(-4) in the previous AF meta-analysis). An AF PRS, adjusted for clinical AF risk factors, was associated with cardioembolic stroke (odds ratio [OR] per SD = 1.40, p = 1.45 x 10(-48)), explaining similar to 20% of the heritable component of cardioembolic stroke risk. The AF PRS was also associated with stroke of undetermined cause (OR per SD = 1.07,p = 0.004), but no other primary stroke subtypes (all p > 0.1). Genetic risk of AF is associated with cardioembolic stroke, independent of clinical risk factors. Studies are warranted to determine whether AF genetic risk can serve as a biomarker for strokes caused by AF.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27
  • [1]23Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy