SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rotter J. I.) ;pers:(Hofman A)"

Sökning: WFRF:(Rotter J. I.) > Hofman A

  • Resultat 1-10 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pulit, S. L., et al. (författare)
  • Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes
  • 2018
  • Ingår i: Neurology-Genetics. - : Ovid Technologies (Wolters Kluwer Health). - 2376-7839. ; 4:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective We sought to assess whether genetic risk factors for atrial fibrillation (AF) can explain cardioembolic stroke risk. We evaluated genetic correlations between a previous genetic study of AF and AF in the presence of cardioembolic stroke using genome-wide genotypes from the Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and 28,026 referents). We tested whether a previously validated AF polygenic risk score (PRS) associated with cardioembolic and other stroke subtypes after accounting for AF clinical risk factors. We observed a strong correlation between previously reported genetic risk for AF, AF in the presence of stroke, and cardioembolic stroke (Pearson r = 0.77 and 0.76, respectively, across SNPs with p < 4.4 x 10(-4) in the previous AF meta-analysis). An AF PRS, adjusted for clinical AF risk factors, was associated with cardioembolic stroke (odds ratio [OR] per SD = 1.40, p = 1.45 x 10(-48)), explaining similar to 20% of the heritable component of cardioembolic stroke risk. The AF PRS was also associated with stroke of undetermined cause (OR per SD = 1.07,p = 0.004), but no other primary stroke subtypes (all p > 0.1). Genetic risk of AF is associated with cardioembolic stroke, independent of clinical risk factors. Studies are warranted to determine whether AF genetic risk can serve as a biomarker for strokes caused by AF.
  •  
2.
  •  
3.
  • Franceschini, N., et al. (författare)
  • GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Carotid artery intima media thickness (cIMT) and carotid plaque are measures of subclinical atherosclerosis associated with ischemic stroke and coronary heart disease (CHD). Here, we undertake meta-analyses of genome-wide association studies (GWAS) in 71,128 individuals for cIMT, and 48,434 individuals for carotid plaque traits. We identify eight novel susceptibility loci for cIMT, one independent association at the previously-identified PINX1 locus, and one novel locus for carotid plaque. Colocalization analysis with nearby vascular expression quantitative loci (cis-eQTLs) derived from arterial wall and metabolic tissues obtained from patients with CHD identifies candidate genes at two potentially additional loci, ADAMTS9 and LOXL4. LD score regression reveals significant genetic correlations between cIMT and plaque traits, and both cIMT and plaque with CHD, any stroke subtype and ischemic stroke. Our study provides insights into genes and tissue-specific regulatory mechanisms linking atherosclerosis both to its functional genomic origins and its clinical consequences in humans. © 2018, The Author(s).
  •  
4.
  •  
5.
  • Arking, D. E., et al. (författare)
  • Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization
  • 2014
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 46:8, s. 826-836
  • Tidskriftsartikel (refereegranskat)abstract
    • The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼ 8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD. © 2014 Nature America, Inc.
  •  
6.
  • Zillikens, M. C., et al. (författare)
  • Large meta-analysis of genome-wide association studies identifies five loci for lean body mass
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p < 5 x 10(-8)) or suggestively genome wide (p < 2.3 x 10(-6)). Replication in 63,475 (47,227 of European ancestry) individuals from 33 cohorts for whole body lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/ near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/ near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass.
  •  
7.
  • Davies, G., et al. (författare)
  • Genetic contributions to variation in general cognitive function : a meta-analysis of genome-wide association studies in the CHARGE consortium (N=53 949)
  • 2015
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 20:2, s. 183-192
  • Tidskriftsartikel (refereegranskat)abstract
    • General cognitive function is substantially heritable across the human life course from adolescence to old age. We investigated the genetic contribution to variation in this important, health-and well-being-related trait in middle-aged and older adults. We conducted a meta-analysis of genome-wide association studies of 31 cohorts (N = 53 949) in which the participants had undertaken multiple, diverse cognitive tests. A general cognitive function phenotype was tested for, and created in each cohort by principal component analysis. We report 13 genome-wide significant single-nucleotide polymorphism (SNP) associations in three genomic regions, 6q16.1, 14q12 and 19q13.32 (best SNP and closest gene, respectively: rs10457441, P = 3.93 x 10(-9), MIR2113; rs17522122, P = 2.55 x 10(-8), AKAP6; rs10119, P = 5.67 x 10(-9), APOE/TOMM40). We report one gene-based significant association with the HMGN1 gene located on chromosome 21 (P = 1x10(-6)). These genes have previously been associated with neuropsychiatric phenotypes. Meta-analysis results are consistent with a polygenic model of inheritance. To estimate SNP-based heritability, the genome-wide complex trait analysis procedure was applied to two large cohorts, the Atherosclerosis Risk in Communities Study (N = 6617) and the Health and Retirement Study (N = 5976). The proportion of phenotypic variation accounted for by all genotyped common SNPs was 29% (s.e. = 5%) and 28% (s.e. = 7%), respectively. Using polygenic prediction analysis, similar to 1.2% of the variance in general cognitive function was predicted in the Generation Scotland cohort (N = 5487; P = 1.5 x 10(-17)). In hypothesis-driven tests, there was significant association between general cognitive function and four genes previously associated with Alzheimer's disease: TOMM40, APOE, ABCG1 and MEF2C.
  •  
8.
  •  
9.
  • Chauhan, G., et al. (författare)
  • Genetic and lifestyle risk factors for MRI-defined brain infarcts in a population-based setting
  • 2019
  • Ingår i: Neurology. - : Ovid Technologies (Wolters Kluwer Health). - 0028-3878 .- 1526-632X. ; 92:5
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectiveTo explore genetic and lifestyle risk factors of MRI-defined brain infarcts (BI) in large population-based cohorts.MethodsWe performed meta-analyses of genome-wide association studies (GWAS) and examined associations of vascular risk factors and their genetic risk scores (GRS) with MRI-defined BI and a subset of BI, namely, small subcortical BI (SSBI), in 18 population-based cohorts (n = 20,949) from 5 ethnicities (3,726 with BI, 2,021 with SSBI). Top loci were followed up in 7 population-based cohorts (n = 6,862; 1,483 with BI, 630 with SBBI), and we tested associations with related phenotypes including ischemic stroke and pathologically defined BI.ResultsThe mean prevalence was 17.7% for BI and 10.5% for SSBI, steeply rising after age 65. Two loci showed genome-wide significant association with BI: FBN2, p = 1.77 x 10(-8); and LINC00539/ZDHHC20, p = 5.82 x 10(-9). Both have been associated with blood pressure (BP)-related phenotypes, but did not replicate in the smaller follow-up sample or show associations with related phenotypes. Age- and sex-adjusted associations with BI and SSBI were observed for BP traits (p value for BI, p([BI]) = 9.38 x 10(-25); p([SSBI]) = 5.23 x 10(-14) for hypertension), smoking (p([BI]) = 4.4 x 10(-10); p([SSBI]) = 1.2 x 10(-4)), diabetes (p([BI]) = 1.7 x 10(-8); p([SSBI]) = 2.8 x 10(-3)), previous cardiovascular disease (p([BI]) = 1.0 x 10(-18); p([SSBI]) = 2.3 x 10(-7)), stroke (p([BI]) = 3.9 x 10(-69); p([SSBI]) = 3.2 x 10(-24)), and MRI-defined white matter hyperintensity burden (p([BI]) = 1.43 x 10(-157); p([SSBI]) = 3.16 x 10(-106)), but not with body mass index or cholesterol. GRS of BP traits were associated with BI and SSBI (p 0.0022), without indication of directional pleiotropy.ConclusionIn this multiethnic GWAS meta-analysis, including over 20,000 population-based participants, we identified genetic risk loci for BI requiring validation once additional large datasets become available. High BP, including genetically determined, was the most significant modifiable, causal risk factor for BI.
  •  
10.
  • Nolte, I. M., et al. (författare)
  • Genetic loci associated with heart rate variability and their effects on cardiac disease risk
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Reduced cardiac vagal control reflected in low heart rate variability (HRV) is associated with greater risks for cardiac morbidity and mortality. In two-stage meta-analyses of genome-wide association studies for three HRV traits in up to 53,174 individuals of European ancestry, we detect 17 genome-wide significant SNPs in eight loci. HRV SNPs tag non-synonymous SNPs (in NDUFA11 and KIAA1755), expression quantitative trait loci (eQTLs) (influencing GNG11, RGS6 and NEO1), or are located in genes preferentially expressed in the sinoatrial node (GNG11, RGS6 and HCN4). Genetic risk scores account for 0.9 to 2.6% of the HRV variance. Significant genetic correlation is found for HRV with heart rate (-0.74 < r(g) < -0.55) and blood pressure (-0.35 < r(g) < -0.20). These findings provide clinically relevant biological insight into heritable variation in vagal heart rhythm regulation, with a key role for genetic variants (GNG11, RGS6) that influence G-protein heterotrimer action in GIRK-channel induced pacemaker membrane hyperpolarization.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy