SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rudstam Lars G.) ;pers:(Isles Peter D. F.)"

Sökning: WFRF:(Rudstam Lars G.) > Isles Peter D. F.

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hrycik, Allison R., et al. (författare)
  • Earlier winter/spring runoff and snowmelt during warmer winters lead to lower summer chlorophyll-a in north temperate lakes
  • 2021
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 27:19, s. 4615-4629
  • Tidskriftsartikel (refereegranskat)abstract
    • Winter conditions, such as ice cover and snow accumulation, are changing rapidly at northern latitudes and can have important implications for lake processes. For example, snowmelt in the watershed—a defining feature of lake hydrology because it delivers a large portion of annual nutrient inputs—is becoming earlier. Consequently, earlier and a shorter duration of snowmelt are expected to affect annual phytoplankton biomass. To test this hypothesis, we developed an index of runoff timing based on the date when 50% of cumulative runoff between January 1 and May 31 had occurred. The runoff index was computed using stream discharge for inflows, outflows, or for flows from nearby streams for 41 lakes in Europe and North America. The runoff index was then compared with summer chlorophyll-a (Chl-a) concentration (a proxy for phytoplankton biomass) across 5–53 years for each lake. Earlier runoff generally corresponded to lower summer Chl-a. Furthermore, years with earlier runoff also had lower winter/spring runoff magnitude, more protracted runoff, and earlier ice-out. We examined several lake characteristics that may regulate the strength of the relationship between runoff timing and summer Chl-a concentrations; however, our tested covariates had little effect on the relationship. Date of ice-out was not clearly related to summer Chl-a concentrations. Our results indicate that ongoing changes in winter conditions may have important consequences for summer phytoplankton biomass and production.
  •  
2.
  • Reinl, Kaitlin L., et al. (författare)
  • Cyanobacterial blooms in oligotrophic lakes : Shifting the high-nutrient paradigm
  • 2021
  • Ingår i: Freshwater Biology. - : John Wiley & Sons. - 0046-5070 .- 1365-2427. ; 66:9, s. 1846-1859
  • Tidskriftsartikel (refereegranskat)abstract
    • Freshwater cyanobacterial blooms have become ubiquitous, posing major threats to ecological and public health. Decades of research have focused on understanding drivers of these blooms with a primary focus on eutrophic systems; however, cyanobacterial blooms also occur in oligotrophic systems, but have received far less attention, resulting in a gap in our understanding of cyanobacterial blooms overall. In this review, we explore evidence of cyanobacterial blooms in oligotrophic freshwater systems and provide explanations for those occurrences. We show that through their unique physiological adaptations, cyanobacteria are able to thrive under a wide range of environmental conditions, including low-nutrient waterbodies. We contend that to fully understand cyanobacterial blooms, and thereby mitigate and manage them, we must expand our inquiries to consider systems along the trophic gradient, and not solely focus on eutrophic systems, thus shifting the high-nutrient paradigm to a trophic-gradient paradigm.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy