SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ruhrmann S) ;pers:(Tegner J)"

Sökning: WFRF:(Ruhrmann S) > Tegner J

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kular, L, et al. (författare)
  • DNA methylation as a mediator of HLA-DRB1*15:01 and a protective variant in multiple sclerosis
  • 2018
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1, s. 2397-
  • Tidskriftsartikel (refereegranskat)abstract
    • The human leukocyte antigen (HLA) haplotype DRB1*15:01 is the major risk factor for multiple sclerosis (MS). Here, we find that DRB1*15:01 is hypomethylated and predominantly expressed in monocytes among carriers of DRB1*15:01. A differentially methylated region (DMR) encompassing HLA-DRB1 exon 2 is particularly affected and displays methylation-sensitive regulatory properties in vitro. Causal inference and Mendelian randomization provide evidence that HLA variants mediate risk for MS via changes in the HLA-DRB1 DMR that modify HLA-DRB1 expression. Meta-analysis of 14,259 cases and 171,347 controls confirms that these variants confer risk from DRB1*15:01 and also identifies a protective variant (rs9267649, p < 3.32 × 10−8, odds ratio = 0.86) after conditioning for all MS-associated variants in the region. rs9267649 is associated with increased DNA methylation at the HLA-DRB1 DMR and reduced expression of HLA-DRB1, suggesting a modulation of the DRB1*15:01 effect. Our integrative approach provides insights into the molecular mechanisms of MS susceptibility and suggests putative therapeutic strategies targeting a methylation-mediated regulation of the major risk gene.
  •  
2.
  • Ruhrmann, S, et al. (författare)
  • Hypermethylation of MIR21 in CD4+ T cells from patients with relapsing-remitting multiple sclerosis associates with lower miRNA-21 levels and concomitant up-regulation of its target genes
  • 2018
  • Ingår i: Multiple sclerosis (Houndmills, Basingstoke, England). - : SAGE Publications. - 1477-0970 .- 1352-4585. ; 24:10, s. 1288-1300
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system caused by genetic and environmental factors. DNA methylation, an epigenetic mechanism that controls genome activity, may provide a link between genetic and environmental risk factors. Objective: We sought to identify DNA methylation changes in CD4+ T cells in patients with relapsing-remitting (RR-MS) and secondary-progressive (SP-MS) disease and healthy controls (HC). Methods: We performed DNA methylation analysis in CD4+ T cells from RR-MS, SP-MS, and HC and associated identified changes with the nearby risk allele, smoking, age, and gene expression. Results: We observed significant methylation differences in the VMP1/MIR21 locus, with RR-MS displaying higher methylation compared to SP-MS and HC. VMP1/MIR21 methylation did not correlate with a known MS risk variant in VMP1 or smoking but displayed a significant negative correlation with age and the levels of mature miR-21 in CD4+ T cells. Accordingly, RR-MS displayed lower levels of miR-21 compared to SP-MS, which might reflect differences in age between the groups, and healthy individuals and a significant enrichment of up-regulated miR-21 target genes. Conclusion: Disease-related changes in epigenetic marking of MIR21 in RR-MS lead to differences in miR-21 expression with a consequence on miR-21 target genes.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Fernandes, SJ, et al. (författare)
  • Non-parametric combination analysis of multiple data types enables detection of novel regulatory mechanisms in T cells of multiple sclerosis patients
  • 2019
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1, s. 11996-
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system with prominent neurodegenerative components. The triggering and progression of MS is associated with transcriptional and epigenetic alterations in several tissues, including peripheral blood. The combined influence of transcriptional and epigenetic changes associated with MS has not been assessed in the same individuals. Here we generated paired transcriptomic (RNA-seq) and DNA methylation (Illumina 450 K array) profiles of CD4+ and CD8+ T cells (CD4, CD8), using clinically accessible blood from healthy donors and MS patients in the initial relapsing-remitting and subsequent secondary-progressive stage. By integrating the output of a differential expression test with a permutation-based non-parametric combination methodology, we identified 149 differentially expressed (DE) genes in both CD4 and CD8 cells collected from MS patients. Moreover, by leveraging the methylation-dependent regulation of gene expression, we identified the gene SH3YL1, which displayed significant correlated expression and methylation changes in MS patients. Importantly, silencing of SH3YL1 in primary human CD4 cells demonstrated its influence on T cell activation. Collectively, our strategy based on paired sampling of several cell-types provides a novel approach to increase sensitivity for identifying shared mechanisms altered in CD4 and CD8 cells of relevance in MS in small sized clinical materials.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy