SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rupp Daniela) "

Sökning: WFRF:(Rupp Daniela)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chapman, Henry N, et al. (författare)
  • Femtosecond X-ray protein nanocrystallography.
  • 2011
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 470:7332, s. 73-7
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.
  •  
2.
  • Feinberg, Alexandra J., et al. (författare)
  • X-ray diffractive imaging of highly ionized helium nanodroplets
  • 2022
  • Ingår i: Physical Review Research. - 2643-1564. ; 4:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Finding the lowest energy configuration of N unit charges on a sphere, known as Thomson's problem, is a long-standing query which has only been studied via numerical simulations. We present its physical realization using multiply charged He nanodroplets. The charge positions are determined by x-ray coherent diffractive imaging with Xe as a contrast agent. In neutral droplets, filaments resulting from Xe atoms condensing on quantum vortices are observed. Unique to charged droplets, however, Xe clusters that condense on charges are distributed on the surface in lattice-like structures, introducing He droplets as experimental model systems for the study of Thomson's problem.
  •  
3.
  • Gorkhover, Tais, et al. (författare)
  • Femtosecond and nanometre visualization of structural dynamics in superheated nanoparticles
  • 2016
  • Ingår i: Nature Photonics. - : Springer Science and Business Media LLC. - 1749-4885 .- 1749-4893. ; 10:2, s. 93-97
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability to observe ultrafast structural changes in nanoscopic samples is essential for understanding non-equilibrium phenomena such as chemical reactions, matter under extreme conditions, ultrafast phase transitions and intense light-matter interactions. Established imaging techniques are limited either in time or spatial resolution and typically require samples to be deposited on a substrate, which interferes with the dynamics. Here, we show that coherent X-ray diffraction images from isolated single samples can be used to visualize femtosecond electron density dynamics. We recorded X-ray snapshot images from a nanoplasma expansion, a prototypical non-equilibrium phenomenon. Single Xe clusters are superheated using an intense optical laser pulse and the structural evolution of the sample is imaged with a single X-ray pulse. We resolved ultrafast surface softening on the nanometre scale at the plasma/vacuum interface within 100 fs of the heating pulse. Our study is the first time-resolved visualization of irreversible femtosecond processes in free, individual nanometre-sized samples.
  •  
4.
  • Gorkhover, Tais, et al. (författare)
  • Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles
  • 2018
  • Ingår i: Nature Photonics. - : Springer Science and Business Media LLC. - 1749-4885 .- 1749-4893. ; 12:3, s. 150-153
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrafast X-ray imaging on individual fragile specimens such as aerosols 1 , metastable particles 2 , superfluid quantum systems 3 and live biospecimens 4 provides high-resolution information that is inaccessible with conventional imaging techniques. Coherent X-ray diffractive imaging, however, suffers from intrinsic loss of phase, and therefore structure recovery is often complicated and not always uniquely defined 4,5 . Here, we introduce the method of in-flight holography, where we use nanoclusters as reference X-ray scatterers to encode relative phase information into diffraction patterns of a virus. The resulting hologram contains an unambiguous three-dimensional map of a virus and two nanoclusters with the highest lateral resolution so far achieved via single shot X-ray holography. Our approach unlocks the benefits of holography for ultrafast X-ray imaging of nanoscale, non-periodic systems and paves the way to direct observation of complex electron dynamics down to the attosecond timescale.
  •  
5.
  • Iwan, Bianca, et al. (författare)
  • Explosion, ion acceleration and molecular fragmentation of methane clusters in the pulsed beam of a free-electron laser
  • 2012
  • Ingår i: Physical Review A. Atomic, Molecular, and Optical Physics. - 1050-2947 .- 1094-1622. ; 86:3, s. 033201-
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray lasers offer new possibilities for creating and probing extreme states of matter. We used intense and short x-ray pulses from the FLASH soft x-ray laser to trigger the explosions of CH4 and CD4 molecules and their clusters. The results show that the explosion dynamics depends on cluster size and indicate a transition from Coulomb explosion to hydrodynamic expansion in larger clusters. The explosion of CH4 and CD4 clusters shows a strong isotope effect: The heavier deuterons acquire higher kinetic energies than the lighter protons. This may be due to an extended inertial confinement of deuterons vs. protons near a rapidly charging cluster core during exposure.
  •  
6.
  • Lundholm, Ida V., et al. (författare)
  • Considerations for three-dimensional image reconstruction from experimental data in coherent diffractive imaging
  • 2018
  • Ingår i: IUCrJ. - : International Union of Crystallography. - 2052-2525. ; 5, s. 531-541
  • Tidskriftsartikel (refereegranskat)abstract
    • Diffraction before destruction using X-ray free-electron lasers (XFELs) has the potential to determine radiation-damage-free structures without the need for crystallization. This article presents the three-dimensional reconstruction of the Melbournevirus from single-particle X-ray diffraction patterns collected at the LINAC Coherent Light Source (LCLS) as well as reconstructions from simulated data exploring the consequences of different kinds of experimental sources of noise. The reconstruction from experimental data suffers from a strong artifact in the center of the particle. This could be reproduced with simulated data by adding experimental background to the diffraction patterns. In those simulations, the relative density of the artifact increases linearly with background strength. This suggests that the artifact originates from the Fourier transform of the relatively flat background, concentrating all power in a central feature of limited extent. We support these findings by significantly reducing the artifact through background removal before the phase-retrieval step. Large amounts of blurring in the diffraction patterns were also found to introduce diffuse artifacts, which could easily be mistaken as biologically relevant features. Other sources of noise such as sample heterogeneity and variation of pulse energy did not significantly degrade the quality of the reconstructions. Larger data volumes, made possible by the recent inauguration of high repetition-rate XFELs, allow for increased signal-to-background ratio and provide a way to minimize these artifacts. The anticipated development of three-dimensional Fourier-volume-assembly algorithms which are background aware is an alternative and complementary solution, which maximizes the use of data.
  •  
7.
  • Seibert, M. Marvin, et al. (författare)
  • Single mimivirus particles intercepted and imaged with an X-ray laser
  • 2011
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 470:7332, s. 78-81
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions(1-4). Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma(1). The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval(2). Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a noncrystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source(5). Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
Typ av publikation
tidskriftsartikel (7)
Typ av innehåll
refereegranskat (7)
Författare/redaktör
Bostedt, Christoph (6)
Hajdu, Janos (5)
Timneanu, Nicusor (4)
Svenda, Martin (4)
Hartmann, Robert (4)
Barty, Anton (4)
visa fler...
Maia, Filipe R. N. C ... (4)
Aquila, Andrew (3)
Erk, Benjamin (3)
Rudenko, Artem (3)
Rolles, Daniel (3)
Seibert, M Marvin (3)
Ulmer, Anatoli (3)
Andreasson, Jakob (3)
Ekeberg, Tomas (3)
Foucar, Lutz (3)
Rudek, Benedikt (3)
Chapman, Henry N. (3)
Bozek, John D. (3)
Epp, Sascha W. (3)
Gumprecht, Lars (3)
Holl, Peter (3)
Kimmel, Nils (3)
Nilsson, Björn (2)
Caleman, Carl (2)
Sierra, Raymond G. (2)
Graafsma, Heinz (2)
Hirsemann, Helmut (2)
Herrmann, Sven (2)
Bogan, Michael J. (2)
Boutet, Sébastien (2)
Andersson, Inger (2)
Shoeman, Robert L (2)
Doak, R Bruce (2)
Iwan, Bianca (2)
Andreasson, Jakob, 1 ... (2)
Seibert, Marvin (2)
Nettelblad, Carl (2)
Fromme, Petra (2)
White, Thomas A. (2)
Bajt, Saša (2)
Barthelmess, Miriam (2)
Coppola, Nicola (2)
DePonte, Daniel P. (2)
Frank, Matthias (2)
Hampton, Christina Y ... (2)
Hauser, Günter (2)
Hömke, André (2)
Krasniqi, Faton (2)
Kühnel, Kai-Uwe (2)
visa färre...
Lärosäte
Uppsala universitet (5)
Kungliga Tekniska Högskolan (2)
Chalmers tekniska högskola (2)
Sveriges Lantbruksuniversitet (2)
Göteborgs universitet (1)
Stockholms universitet (1)
visa fler...
Lunds universitet (1)
visa färre...
Språk
Engelska (7)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (7)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy