SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sörensen Jens) ;pers:(Eriksson Barbro)"

Sökning: WFRF:(Sörensen Jens) > Eriksson Barbro

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergström, Mats, et al. (författare)
  • PET with [11C]-Metomidate for the Visualization of Adrenocortical Tumors and Discrimination from Other Lesions
  • 1999
  • Ingår i: Clinical Positron Imaging. - 1095-0397 .- 1878-5751. ; 2:6, s. 339-
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose:The purpose of the study was to evaluate the potential role of PET with the adrenocortical-specific tracer 11C-metomidate in the characterization of incidentally found adrenal cortical lesions and in adrenocortical carcinomas.Methods:PET with 11C-metomidate was performed in 15 patients with unilateral adrenal mass confirmed by CT (incidentalomas) and in 9 additional patients with adrenocortical cancer. All incidentalomas subsequently underwent surgery, except 2 subjected to biopsy only. These lesions were histopathologically examined and diagnosed as adrenal cortical adenoma (n = 6; 3 nonfunctioning), adrenocortical carcinoma (n = 2) and nodular hyperplasia (n = 1). The remaining were non-cortical lesions including 1 pheochromocytoma, 1 myelolipoma, 2 adrenal cysts, and 2 metastases.Results:All lesions, except 1, with an adrenocortical origin were easily identified due to exceedingly high uptake of 11C-metomidate, whereas the non-cortical lesions showed very low uptake. The 1 false negative was a cancer that at surgery was found to be extensively necrotic. High uptake was also seen in normal adrenal glands. The tracer uptake kinetics indicated trapping of the tracer in the cortical lesions. For quantitative evaluation of tracer binding in individual lesions, the simple SUV concept was found to be equally accurate as more elaborate kinetic analyses.Conclusion:The patients presented and altogether over 40 PET investigations have demonstrated 11C-metomidate to be an attractive tracer for the characterization of adrenal masses with the ability to discriminate lesions of adrenal cortical origin from non-cortical lesions. Additionally the method allows the assessment of metastases from adrenocortical cancers, and the very high contrast has allowed partial whole-body examinations.
  •  
2.
  • Carlbom, Lina, et al. (författare)
  • Whole-body MRI including diffusion-weighted MRI compared with 5-HTP PET/CT in the detection of neuroendocrine tumors
  • 2017
  • Ingår i: Upsala Journal of Medical Sciences. - : Uppsala Medical Society. - 0300-9734 .- 2000-1967. ; 122:1, s. 43-50
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM: We wanted to explore if whole-body magnetic resonance imaging (MRI) including diffusion-weighted (DW) and liver-specific contrast agent-enhanced imaging could be valuable in lesion detection of neuroendocrine tumors (NET). [11C]-5-Hydroxytryptophan positron emission tomography/computed tomography (5-HTP PET/CT) was used for comparison.MATERIALS AND METHODS: Twenty-one patients with NET were investigated with whole-body MRI, including DW imaging (DWI) and contrast-enhanced imaging of the liver, and whole-body 5-HTP PET/CT. Seven additional patients underwent upper abdomen MRI including DWI, liver-specific contrast agent-enhanced imaging, and 5-HTP PET/CT.RESULTS: There was a patient-based concordance of 61% and a lesion-based concordance of 53% between the modalities. MRI showed good concordance with PET in detecting bone metastases but was less sensitive in detecting metastases in mediastinal lymph nodes. MRI detected more liver metastases than 5-HTP PET/CT.CONCLUSION: Whole-body MRI with DWI did not detect all NET lesions found with whole-body 5-HTP PET/CT. Our findings indicate that MRI of the liver including liver-specific contrast agent-enhanced imaging and DWI could be a useful complement to whole-body 5-HTP PET/CT.
  •  
3.
  • Eriksson, Olof, et al. (författare)
  • Detection of Metastatic Insulinoma by Positron Emission Tomography with [(68)Ga]Exendin-4 - : a case report
  • 2014
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 0021-972X .- 1945-7197. ; 99:5, s. 1519-1524
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Insulinomas are the most common cause of endogenous hyperinsulinaemic hypoglycaemia in non-diabetic adult patients. They are usually benign and curative surgery is the "gold standard" treatment if they can be localized. Malignant insulinomas are seen in less than 10% and their prognosis is poor. The Glucagon Like Peptide-1 receptor (GLP-1R) is markedly upregulated in insulinomas - especially benign lesions which are difficult to localize with current imaging techniques.Objective:To assess the possibility of the detection of primary and metastatic insulinoma by PET using [(68)Ga]Ga-DO3A-VS-Cys(40)-Exendin-4 ([(68)Ga]Exendin-4) in a patient with severe hypoglycemia.Design:Dynamic and static PET/CT examination of a patient using [68Ga]Exendin-4.Setting:Uppsala University Hospital, Uppsala, Sweden.Patients:A patient presented with hypoglycemia requiring continuous intravenous glucose infusions. A pancreatic insulinoma was suspected and an exploratory laparotomy was urgently performed. At surgery, a tumor in the pancreatic tail with an adjacent metastasis was found and a distal pancreatic resection (plus splenectomy) and removal of lymph node was performed. Histopathology showed a WHO grade II insulinoma. Postoperatively hypoglycemia persisted but a PET/CT examination using the neuroendocrine marker [(11)C]-5-hydroxy-L-tryptophan was negative.Interventions:The patient was administered with [(68)Ga]Exendin-4 and examined by dynamic PET over the liver and pancreas.Main Outcome Measures:N/AResults:The stable GLP-1 analogue Exendin-4 was labeled with (68)Ga for PET imaging of GLP-1R expressing tumors. The patient was examined by [(68)Ga]Exendin-4-PET/CT which confirmed several small GLP-1R positive lesions in the liver and a lymph node that could not be conclusively identified by other imaging techniques. The results obtained from the [(68)Ga]Exendin-4-PET/CT examination provided the basis for continued systemic treatment.Conclusion:The results of the [(68)Ga]Exendin-4-PET/CT examination governed the treatment strategy of this particular patient and demonstrated the potential of this technique for future management of patients with this rare, but potentially fatal disease.
  •  
4.
  • Eriksson, Olof, et al. (författare)
  • Quantitative Imaging of Serotonergic Biosynthesis and Degradation in the Endocrine Pancreas
  • 2014
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 55:3, s. 460-465
  • Tidskriftsartikel (refereegranskat)abstract
    • Serotonergic biosynthesis in the endocrine pancreas, of which the islets of Langerhans is the major constituent, has been implicated in insulin release and β cell proliferation. In this study, we investigated the feasibility of quantitative noninvasive imaging of the serotonergic metabolism in the pancreas using the PET tracer (11)C-5-hydroxy-l-tryptophan ((11)C-5-HTP).METHODS: Uptake of (11)C-5-HTP, and its specificity for key enzymes in the serotonergic metabolic pathway, was assessed in vitro (INS-1 and PANC1 cells and human islet and exocrine preparations) and in vivo (nonhuman primates and healthy and diabetic rats).RESULTS: In vitro tracer uptake in endocrine cells (INS-1 and human islets), but not PANC1 and exocrine cells, was mediated specifically by intracellular conversion into serotonin. Pancreatic uptake of (11)C-5-HTP in nonhuman primates was markedly decreased by inhibition of the enzyme dopa decarboxylase, which converts (11)C-5-HTP to (11)C-serotonin and increased after inhibition of monoamine oxidase-A, the main enzyme responsible for serotonin degradation. Uptake in the rat pancreas was similarly modulated by inhibition of monoamine oxidase-A and was reduced in animals with induced diabetes.CONCLUSION: The PET tracer (11)C-5-HTP can be used for quantitative imaging of the serotonergic system in the endocrine pancreas.
  •  
5.
  • Eriksson, Olof, et al. (författare)
  • The Positron Emission Tomography ligand [11C]5-Hydroxy-Tryptophan can be used as a surrogate marker for the human endocrine pancreas
  • 2014
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 63:10, s. 3428-3437
  • Tidskriftsartikel (refereegranskat)abstract
    • In humans a well-developed serotonin system is localized to the pancreatic islets while being absent in exocrine pancreas. Assessment of pancreatic serotonin biosynthesis could therefore be used to estimate the human endocrine pancreas. Proof of concept was tested in a prospective clinical trial by comparisons of type 1 diabetic (T1D) patients, with extensive reduction of beta cells, with healthy volunteers (HV).C-peptide negative (i.e. insulin-deficient) T1D subjects (n=10) and HV (n=9) underwent dynamic Positron Emission Tomography with the radiolabeled serotonin precursor [(11)C]5-Hydroxy-Tryptophan ([(11)C]5-HTP).A significant accumulation of [(11)C]5-HTP was obtained in the pancreas of the HV, with large inter-individual variation. A substantial and highly significant reduction (66%) in the pancreatic uptake of [(11)C]5-HTP in T1D subjects was observed, and this was most evident in the corpus and caudal regions of the pancreas where beta-cells normally are the major constituent of the islets.[(11)C]5-HTP retention in the pancreas was reduced in T1D compared to non-diabetic subjects. Accumulation of [(11)C]5-HTP in the pancreas of both HV and subjects with T1D were in agreement with previously reported morphological observations on the beta cell volume implying that [(11)C]5-HTP retention is a useful non-invasive surrogate marker for the human endocrine pancreas.
  •  
6.
  • Garske-Román, Ulrike, 1963- (författare)
  • 177Lu-DOTA-octreotate Radionuclide Therapy of Neuroendocrine Tumours : Dosimetry-Based Therapy Planning and Outcome
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Peptide receptor radionuclide therapy for the internal radiation of neuroendocrine tumours expressing somatostatin receptors has made great advances and offers promising results. 177Lu-DOTA-octreotate is one of the most widely used radiopeptides, but kidneys and bone marrow are organs at risk. Methods of measuring radiation doses to at-risk organs and tumours (dosimetry) on an individual patient basis have been regarded as impracticable and a maximum of 4 treatment cycles has widely been accepted as the treatment standard instead.The first aim of this thesis was to establish a clinically feasible protocol to calculate absorbed doses to bone marrow and the kidneys during therapy with 177Lu-DOTA-octreotate. A new dosimetry protocol for the bone marrow was described. Dosimetry for solid organs had previously been described based on 3-dimensional imaging by the research group. In the current thesis it was demonstrated that in most patients only minor changes of the effective half-life occurred in the kidneys. By performing complete dosimetry during the first cycle and comparing it with the uptake in later cycles, it was shown that the absorbed dose can be cal-culated based on the activity concentration at 24 hours after therapy. The study concluded that 50% of all patients could receive more than the standard 4 treatment cycles with 7.4 GBq 177Lu-DOTA-octreotate without passing the limit of 23 Gray to the kidneys or 2 Gray to the bone marrow, whereas 20% would tolerate fewer than 4 cycles. The second aim was to describe treatment outcomes of dosimetry-guided therapy with 177Lu-DOTA-octreotate. Patients with metastasized colorectal neuroendocrine tumours and bronchial carcinoids were shown to have longer survival with this method than previously reported. Morphological tumour response could be correlated to time to progression. Furthermore, in a case of low-differentiated neuroendocrine cancer it was shown that large tumours with high proliferation can also be treated with this method and that tumour-to-risk organ ratios can improve in later cycles, resulting in a more effective treatment.Dosimetry-guided, fractionated radionuclide therapy with 177Lu-DOTA-octreotate is a valuable treatment option for patients with advanced neuroendocrine tumours expressing somatostatin receptors.
  •  
7.
  • Sandström, Mattias, et al. (författare)
  • Comparative Biodistribution and Radiation Dosimetry of Ga-68-DOTATOC and Ga-68-DOTATATE in Patients with Neuroendocrine Tumors
  • 2013
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 54:10, s. 1755-1759
  • Tidskriftsartikel (refereegranskat)abstract
    • Ga-68-DOTATOC and Ga-68-DOTATATE are 2 radiolabeled somatostatin analogs for in vivo diagnosis of neuroendocrine tumors with PET. The aim of the present work was to measure their comparative biodistribution and radiation dosimetry. Methods: Ten patients diagnosed with neuroendocrine tumors were included. Each patient underwent a 45-min dynamic and 3 whole-body PET/CT scans at 1, 2, and 3 h after injection of each tracer on consecutive days. Absorbed doses were calculated using OLINDA/EXM 1.1. Results: Data from 9 patients could be included in the analysis. Of the major organs, the highest uptake at 1, 2, and 3 h after injection was observed in the spleen, followed by kidneys and liver. For both tracers, the highest absorbed organ doses were seen in the spleen and urinary bladder wall, followed by kidney, adrenals, and liver. The absorbed doses to the liver and gallbladder wall were slightly but significantly higher for Ga-68-DOTATATE. The total effective dose was 0.021 +/- 0.003 mSv/MBq for both tracers. Conclusion: The effective dose for a typical 100-MBq administration of Ga-68-DOTATATE and Ga-68-DOTATOC is 2.1 mSv for both tracers. Therefore, from a radiation dosimetry point of view, there is no preference for either tracer for PET/CT evaluation of somatostatin receptor-expressing tumors.
  •  
8.
  • Selvaraju, Ram Kumar, et al. (författare)
  • Dosimetry of [(68)Ga]Ga-DO3A-VS-Cys(40)-Exendin-4 in rodents, pigs, non-human primates and human - : repeated scanning in human is possible.
  • 2015
  • Ingår i: American journal of nuclear medicine and molecular imaging. - 2160-8407. ; 5:3, s. 259-69
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantitative PET imaging with [(68)Ga]Ga-DO3A-VS-Cys(40)-Exendin-4 has potential use in diabetes and cancer. However, the radiation dose to the kidneys has been a concern for the possibility of repeated imaging studies in humans. Therefore, we investigated the dosimetry of [(68)Ga]Ga-DO3A-VS-Cys(40)-Exendin-4 based on the biodistribution data in rats, pigs, non-human primates (NHP) and a human.Organ distribution of [(68)Ga]Ga-DO3A-VS-Cys(40)-Exendin-4 in rats (Male Lewis; n=12; 30, 60, and 80 min) was measured ex vivo. The dynamic uptake of [(68)Ga]Ga-DO3A-VS-Cys(40)-Exendin-4 in the abdomen was assessed by PET/CT scanning of pigs (male; n = 4, 0-60 min), NHP (Female; cynomolgus; n=3; 0-90 min), and human (female; n=1; 0-40, 100, 120 min).The organ distribution data in each species were extrapolated to those of a human, assuming similar distribution between the species. Residence times were assessed by trapezoidal approximation of the kinetic data. Organ doses (mGy/MBq) and the whole body effective dose (mSv/MBq), was extrapolated by using the OLINDA/EXM 1.1 software. The extrapolated human whole body effective dose was 0.017 ± 0.004 (rats), 0.014 ± 0.004 (pigs), 0.017 ± 0.004 (NHP), and 0.016 (human) mSv/MBq. The absorbed dose to the kidneys was limiting:0.33 ± 0.06 (rats), 0.28±0.05 (pigs), 0.65 ± 0.11 (NHP), and 0.28 (human) mGy/MBq, which corresponded to the maximum yearly administered amounts of 455 (rat), 536 (pig), 231 (NHP), and 536 (human) MBq before reaching the yearly kidney limiting dose of 150 mGy. More than 200 MBq of [(68)Ga]Ga-DO3A-VS-Cys(40)-Exendin-4 can be administered yearly in a human, allowing for repeated (2-4 times) scanning. This potentially enables longitudinal clinical PET imaging studies of the GLP-1R in the pancreas, transplanted islets, or insulinoma.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy