SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sörensen Jens) ;pers:(Tolmachev Vladimir)"

Search: WFRF:(Sörensen Jens) > Tolmachev Vladimir

  • Result 1-10 of 33
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abouzayed, Ayman, et al. (author)
  • Preclinical Evaluation of 99mTc-Labeled GRPR Antagonists maSSS/SES-PEG2-RM26 for Imaging of Prostate Cancer
  • 2021
  • In: Pharmaceutics. - : MDPI. - 1999-4923. ; 13:2
  • Journal article (peer-reviewed)abstract
    • Background: Gastrin-releasing peptide receptor (GRPR) is an important target for imaging of prostate cancer. The wide availability of single-photon emission computed tomography/computed tomography (SPECT/CT) and the generator-produced 99mTc can be utilized to facilitate the use of GRPR-targeting radiotracers for diagnostics of prostate cancers.Methods: Synthetically produced mercaptoacetyl-Ser-Ser-Ser (maSSS)-PEG2-RM26 and mercaptoacetyl-Ser-Glu-Ser (maSES)-PEG2-RM26 (RM26 = d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2) were radiolabeled with 99mTc and characterized in vitro using PC-3 cells and in vivo, using NMRI or PC-3 tumor bearing mice. SPECT/CT imaging and dosimetry calculations were performed for [99mTc]Tc-maSSS-PEG2-RM26.Results: Peptides were radiolabeled with high yields (>98%), demonstrating GRPR specific binding and slow internalization in PC-3 cells. [99mTc]Tc-maSSS-PEG2-RM26 outperformed [99mTc]Tc-maSES-PEG2-RM26 in terms of GRPR affinity, with a lower dissociation constant (61 pM vs 849 pM) and demonstrating higher tumor uptake. [99mTc]Tc-maSSS-PEG2-RM26 had tumor-to-blood, tumor-to-muscle, and tumor-to-bone ratios of 97 ± 56, 188 ± 32, and 177 ± 79, respectively. SPECT/CT images of [99mTc]Tc-maSSS-PEG2-RM26 clearly visualized the GRPR-overexpressing tumors. The dosimetry estimated for [99mTc]Tc-maSSS-PEG2-RM26 showed the highest absorbed dose in the small intestine (1.65 × 10−3 mGy/MBq), and the effective dose is 3.49 × 10−3 mSv/MBq.Conclusion: The GRPR antagonist maSSS-PEG2-RM26 is a promising GRPR-targeting agent that can be radiolabeled through a single-step with the generator-produced 99mTc and used for imaging of GRPR-expressing prostate cancer.
  •  
2.
  • Alhuseinalkhudhur, Ali, et al. (author)
  • Human Epidermal Growth Factor Receptor 2-Targeting [68Ga]Ga-ABY-025 PET/CT Predicts Early Metabolic Response in Metastatic Breast Cancer.
  • 2023
  • In: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667. ; 64:9, s. 1364-1370
  • Journal article (peer-reviewed)abstract
    • Imaging using the human epidermal growth factor receptor 2 (HER2)-binding tracer 68Ga-labeled ZHER2:2891-Cys-MMA-DOTA ([68Ga]Ga-ABY-025) was shown to reflect HER2 status determined by immunohistochemistry and in situ hybridization in metastatic breast cancer (MBC). This single-center open-label phase II study investigated how [68Ga]Ga-ABY-025 uptake corresponds to biopsy results and early treatment response in both primary breast cancer (PBC) planned for neoadjuvant chemotherapy and MBC. Methods: Forty patients with known positive HER2 status were included: 19 with PBC and 21 with MBC (median, 3 previous treatments). [68Ga]Ga-ABY-025 PET/CT, [18F]F-FDG PET/CT, and core-needle biopsies from targeted lesions were performed at baseline. [18F]F-FDG PET/CT was repeated after 2 cycles of therapy to calculate the directional change in tumor lesion glycolysis (Δ-TLG). The largest lesions (up to 5) were evaluated in all 3 scans per patient. SUVs from [68Ga]Ga-ABY-025 PET/CT were compared with the biopsied HER2 status and Δ-TLG by receiver operating characteristic analyses. Results: Trial biopsies were HER2-positive in 31 patients, HER2-negative in 6 patients, and borderline HER2-positive in 3 patients. The [68Ga]Ga-ABY-025 PET/CT cutoff SUVmax of 6.0 predicted a Δ-TLG lower than -25% with 86% sensitivity and 67% specificity in soft-tissue lesions (area under the curve, 0.74 [95% CI, 0.67-0.82]; P = 0.01). Compared with the HER2 status, this cutoff resulted in clinically relevant discordant findings in 12 of 40 patients. Metabolic response (Δ-TLG) was more pronounced in PBC (-71% [95% CI, -58% to -83%]; P < 0.0001) than in MBC (-27% [95% CI, -16% to -38%]; P < 0.0001), but [68Ga]Ga-ABY-025 SUVmax was similar in both with a mean SUVmax of 9.8 (95% CI, 6.3-13.3) and 13.9 (95% CI, 10.5-17.2), respectively (P = 0.10). In multivariate analysis, global Δ-TLG was positively associated with the number of previous treatments (P = 0.0004) and negatively associated with [68Ga]Ga-ABY-025 PET/CT SUVmax (P = 0.018) but not with HER2 status (P = 0.09). Conclusion: [68Ga]Ga-ABY-025 PET/CT predicted early metabolic response to HER2-targeted therapy in HER2-positive breast cancer. Metabolic response was attenuated in recurrent disease. [68Ga]Ga-ABY-025 PET/CT appears to provide an estimate of the HER2 expression required to induce tumor metabolic remission by targeted therapies and might be useful as an adjunct diagnostic tool.
  •  
3.
  • Alhuseinalkhudhur, Ali, et al. (author)
  • Kinetic analysis of HER2-binding ABY-025 Affibody molecule using dynamic PET in patients with metastatic breast cancer
  • 2020
  • In: EJNMMI Research. - : SPRINGEROPEN. - 2191-219X. ; 10:1
  • Journal article (peer-reviewed)abstract
    • Background: High expression of human epidermal growth factor receptor type 2 (HER2) represents an aggressive subtype of breast cancer. Anti-HER2 treatment requires a theragnostic approach wherein sufficiently high receptor expression in biopsy material is mandatory. Heterogeneity and discordance of HER2 expression between primary tumour and metastases, as well as within a lesion, present a complication for the treatment and require multiple biopsies. Molecular imaging using the HER2-targeting Affibody peptide ABY-025 radiolabelled with Ga-68-gallium for PET/CT is currently under investigation as a non-invasive tool for whole-body evaluation of metastatic HER2 expression. Initial studies demonstrated a high correlation between Ga-68-ABY-025 standardized uptake values (SUVs) and histopathology. However, detecting small liver lesions might be compromised by high background uptake. This study aimed to explore the applicability of kinetic modelling and parametric image analysis for absolute quantification of Ga-68-ABY-025 uptake and HER2-receptor expression and how that relates to static SUVs.Methods: Dynamic Ga-68-ABY-025 PET of the upper abdomen was performed 0-45 min post-injection in 16 patients with metastatic breast cancer. Five patients underwent two examinations to test reproducibility. Parametric images of tracer delivery (K-1) and irreversible binding (K-i) were created with an irreversible two-tissue compartment model and Patlak graphical analysis using an image-derived input function from the descending aorta. A volume of interest (VOI)-based analysis was performed to validate parametric images. SUVs were calculated from 2 h and 4 h post-injection static whole-body images and compared to K-i.Results: Characterization of HER2 expression in smaller liver metastases was improved using parametric images. K-i values from parametric images agreed very well with VOI-based gold standard (R-2 > 0.99, p < 0.001). SUVs of metastases at 2 h and 4 h post-injection were highly correlated with K-i values from both the two-tissue compartment model and Patlak method (R-2 = 0.87 and 0.95, both p < 0.001). Ga-68-ABY-025 PET yielded high test-retest reliability (relative repeatability coefficient for Patlak 30% and for the two-tissue compartment model 47%).Conclusion: Ga-68-ABY-025 binding in HER2-positive metastases was well characterized by irreversible two-tissue compartment model wherein K-i highly correlated with SUVs at 2 and 4 h. Dynamic scanning with parametric image formation can be used to evaluate metastatic HER2 expression accurately.
  •  
4.
  •  
5.
  • Beshara, Soheir, et al. (author)
  • Pharmacokinetics and red cell utilization of 52Fe/59Fe-labelled iron polymaltose in anaemic patients using positron emission tomography
  • 2003
  • In: British Journal of Haematology. - : Wiley. - 0007-1048 .- 1365-2141. ; 120:5, s. 853-859
  • Journal article (peer-reviewed)abstract
    • Parenteral iron-polysaccharide complexes are increasingly applied. The pharmacokinetics of iron sucrose have been assessed by our group using positron emission tomography (PET). A single intravenous injection of 100 mg iron as iron (III) hydroxide-polymaltose complex, labelled with a tracer in the form of 52Fe/59Fe, was similarly assessed in six patients using PET for about 8 h. Red cell utilization was followed for 4 weeks. Iron polymaltose was similarly distributed to the liver, spleen and bone marrow. However, a larger proportion of this complex was rapidly distributed to the bone marrow. The shorter equilibration phase for the liver, about 25 min, indicates the minimal role of the liver for direct distribution. Splenic uptake also reflected the reticuloendothelial handling of this complex. Red cell utilization ranged from 61% to 99%. Despite the relatively higher uptake by the bone marrow, there was no saturation of marrow transport systems at this dose level. In conclusion, high red cell utilization of iron polymaltose occurred in anaemic patients. The major portion of the injected dose was rapidly distributed to the bone marrow. In addition, the reticuloendothelial uptake of this complex may reflect the safety of polysaccharide complexes. Non-saturation of transport systems to the bone marrow indicated the presence of a large interstitial transport pool, which might possibly be transferrin.
  •  
6.
  • Bragina, Olga, et al. (author)
  • Direct Intra-Patient Comparison of Scaffold Protein-Based Tracers, [99mTc]Tc-ADAPT6 and [99mTc]Tc-(HE)3-G3, for Imaging of HER2-Positive Breast Cancer
  • 2023
  • In: Cancers. - : MDPI AG. - 2072-6694. ; 15:12
  • Journal article (peer-reviewed)abstract
    • Simple Summary The receptor HER2 is overexpressed in some breast cancers. Tumours with a high HER2 expression can be successfully treated with the antibodies trastuzumab and pertuzumab. The radionuclide imaging of HER2 in disseminated cancer could help to select patients for treatment using these antibodies. Novel radiolabelled small-sized tracers, scaffold proteins, have shown excellent imaging properties in preclinical studies. The scaffold proteins [Tc-99m]Tc-ADAPT6 and DARPin [Tc-99m]Tc-(HE)(3)-G3 have been found to be safe in Phase I clinical trials. They showed promising results in the imaging of HER2. In this study, we compared the distribution of both tracers in the same patients with breast cancer to evaluate whether one of them has any decisive advantage. We found that both tracers provide an excellent visualization of tumours, but the accumulation of [Tc-99m]Tc-ADAPT6 in tumours is higher. The data from this study are essential for researchers developing imaging agents. Previous Phase I clinical evaluations of the radiolabelled scaffold proteins [Tc-99m]Tc-ADAPT6 and DARPin [Tc-99m]Tc-(HE)(3)-G3 in breast cancer patients have demonstrated their safety and indicated their capability to discriminate between HER2-positive and HER2-negative tumours. The objective of this study was to compare the imaging of HER2-positive tumours in the same patients using [Tc-99m]Tc-ADAPT6 and [Tc-99m]Tc-(HE)(3)-G3. Eleven treatment-naive female patients (26-65 years) with HER2-positive primary and metastatic breast cancer were included in the study. Each patient was intravenously injected with [Tc-99m]Tc-ADAPT6, followed by an [Tc-99m]Tc-(HE)(3)-G3 injection 3-4 days later and chest SPECT/CT was performed. All primary tumours were clearly visualized using both tracers. The uptake of [Tc-99m]Tc-ADAPT6 in primary tumours (SUVmax = 4.7 & PLUSMN; 2.1) was significantly higher (p < 0.005) than the uptake of [Tc-99m]Tc-(HE)(3)-G3 (SUVmax = 3.5 & PLUSMN; 1.7). There was no significant difference in primary tumour-to-contralateral site values for [Tc-99m]Tc-ADAPT6 (15.2 & PLUSMN; 7.4) and [Tc-99m]Tc-(HE)(3)-G3 (19.6 & PLUSMN; 12.4). All known lymph node metastases were visualized using both tracers. The uptake of [Tc-99m]Tc-ADAPT6 in all extrahepatic soft tissue lesions was significantly (p < 0.0004) higher than the uptake of [Tc-99m]Tc-(HE)(3)-G3. In conclusion, [Tc-99m]Tc-ADAPT6 and [Tc-99m]Tc-(HE)(3)-G3 are suitable for the visualization of HER2-positive breast cancer. At the selected time points, [Tc-99m]Tc-ADAPT6 has a significantly higher uptake in soft tissue lesions, which might be an advantage for the visualization of small metastases.
  •  
7.
  • Bragina, Olga, et al. (author)
  • Phase I clinical evaluation of 99mTc-labeled Affibody molecule for imaging HER2 expression in breast cancer
  • 2023
  • In: Theranostics. - : Ivyspring International Publisher. - 1838-7640. ; 13:14, s. 4858-4871
  • Journal article (peer-reviewed)abstract
    • The determination of tumor human epidermal growth factor receptor type 2 (HER2) status is of increasing importance with the recent approval of more efficacious HER2-targeted treatments. There is a lack of suitable methods for clinical in vivo HER2 expression assessment. Affibody molecules are small affinity proteins ideal for imaging detection of receptors, which are engineered using a small (molecular weight 6.5 kDa) nonimmunoglobulin scaffold. Labeling of Affibody molecules with positron emitters enabled the development of sensitive and specific agents for molecular imaging. The development of probes for SPECT would permit the use of Affibody-based imaging in regions where PET is not available. In this first-in-human study, we evaluated the safety, biodistribution, and dosimetry of the Tc-99m-ZHER2:41071 Affibody molecule developed for SPECT/CT imaging of HER2 expression.Methods: Thirty-one patients with primary breast cancer were enrolled and divided into three cohorts (injected with 500, 1000, or 1500 mu g ZHER2:41071) comprising at least five patients with high (positive) HER2 tumor expression (IHC score 3+ or 2+ and ISH positive) and five patients with low (IHC score 2+ or 1+ and ISH negative) or absent HER2 tumor expression. Patients were injected with 451 +/- 71 MBq Tc-99m-ZHER2:4107. Planar scintigraphy was performed after 2, 4, 6 and 24 h, and SPECT/CT imaging followed planar imaging 2, 4 and 6 h after injection.Results: Injections of Tc-99m-ZHER2:41071 were well tolerated and not associated with adverse events. Normal organs with the highest accumulation were the kidney and liver. The effective dose was 0.019 +/- 0.004 mSv/MBq. Injection of 1000 mu g provided the best standard discrimination between HER2-positive and HER2-low or HER2-negative tumors 2 h after injection (SUVmax 16.9 +/- 7.6 vs. 3.6 +/- 1.4, p < 0.005). The Tc-99m-ZHER2:41071 uptake in HER2-positive lymph node metastases (SUVmax 6.9 +/- 2.4, n = 5) was significantly (p < 0.05) higher than that in HER2-low/negative lymph nodes (SUVmax 3.5 +/- 1.2, n = 4). Tc-99m-ZHER2:41071 visualized hepatic metastases in a patient with liver involvement.Conclusions: Injections of Tc-99m-ZHER2:41071 appear safe and exhibit favorable dosimetry. The protein dose of 1000 mu g provides the best discrimination between HER2-positive and HER2-low/negative expression of HER2 according to the definition used for current HER2-targeting drugs.
  •  
8.
  • Bragina, Olga, et al. (author)
  • Phase I study of 99mTc-ADAPT6, a scaffold protein-based probe for visualization of HER2 expression in breast cancer
  • 2021
  • In: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 62:4, s. 493-499
  • Journal article (peer-reviewed)abstract
    • Radionuclide molecular imaging of human epidermal growth factor (HER2) expression may be helpful to stratify breast and gastroesophageal cancer patients for HER2-targeting therapies. ADAPTs (albumin-binding domain derived affinity proteins) are a new type of small (46-59 amino acids) proteins useful as probes for molecular imaging. The aim of this first-in-human study was to evaluate biodistribution, dosimetry, and safety of the HER2-specific 99mTc-ADAPT6.METHODS: Twenty-nine patients with primary breast cancerwere included. In 22 patients with HER2-positive (n = 11) or HER2-negative (n = 11) histopathology an intravenous injection with 385±125 MBq 99mTc-ADAPT6 was performed, randomized to an injected protein mass of either 500 µg (n = 11) or 1000 µg (n = 11). Planar scintigraphy followed by SPECT imaging was performed after 2, 4, 6 and 24 h. An additional cohort (n = 7) was injected with 165±29 MBq (injected protein mass 250 µg) and imaging was performed after 2 h only.RESULTS: Injections of 99mTc-ADAPT6 at all injected mass levels were well tolerated and not associated with adverse effects. 99mTc-ADAPT6 cleared rapidly from blood and most other tissues. The normal organs with the highest accumulation were kidney, liver and lung. Effective doses were 0.009±0.002 and 0.010±0.003 mSv/MBq for injected protein masses of 500 and 1000 µg, respectively. Injection of 500 µg resulted in excellent discrimination between HER2-positive and HER2-negative tumors already 2 h after injection (tumor-to-contralateral breast ratio was 37±19 vs 5±2, p<0.01). The tumor-to-contralateral breast ratios for HER2-positive tumors were significantly (p<0.05) higher for injected mass of 500 µg than for both 250 and 1000 µg.CONCLUSION: Injections of 99mTc-ADAPT6 are safe and associated with low absorbed and effective doses. Protein dose of 500 µg is preferable for discrimination between tumors with high and low expression of HER2. Further studies are justified to evaluate if 99mTc-ADAPT6 can be used as an imaging probe for stratification of patients for HER2-targeting therapy in the areas where PET imaging is not readily available.
  •  
9.
  • Bragina, Olga, et al. (author)
  • Phase I Trial of 99mTc-(HE)3-G3, a DARPin-Based Probe for Imaging of HER2 Expression in Breast Cancer
  • 2022
  • In: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 63:4, s. 528-535
  • Journal article (peer-reviewed)abstract
    • Radionuclide molecular imaging of human epidermal growth factor receptor type 2 (HER2) expression may enable a noninvasive discrimination between HER2-positive and HER2-negative breast cancers for stratification of patients for HER2-targeted treatments. DARPin (designed ankyrin repeat proteins) G3 is a small (molecular weight, 14 kDa) scaffold protein with picomolar affinity to HER2. The aim of this first-in-humans study was to evaluate the safety, biodistribution, and dosimetry of 99mTc-(HE)3-G3.Methods: Three cohorts of patients with primary breast cancer (each including at least 4 patients with HER2-negative and 5 patients with HER2-positive tumors) were injected with 1,000, 2,000, or 3,000 μg of 99mTc-(HE)3-G3 (287 ± 170 MBq). Whole-body planar imaging followed by SPECT was performed at 2, 4, 6, and 24 h after injection. Vital signs and possible side effects were monitored during imaging and up to 7 d after injection.Results: All injections were well tolerated. No side effects were observed. The results of blood and urine analyses did not differ before and after studies. 99mTc-(HE)3-G3 cleared rapidly from the blood. The highest uptake was detected in the kidneys and liver followed by the lungs, breasts, and small intestinal content. The hepatic uptake after injection of 2,000 or 3,000 μg was significantly (P < 0.05) lower than the uptake after injection of 1,000 μg. Effective doses did not differ significantly between cohorts (average, 0.011 ± 0.004 mSv/MBq). Tumor–to–contralateral site ratios for HER-positive tumors were significantly (P < 0.05) higher than for HER2-negative at 2 and 4 h after injection.Conclusion: Imaging of HER2 expression using 99mTc-(HE)3-G3 is safe and well tolerated and provides a low absorbed dose burden on patients. This imaging enables discernment of HER2-positive and HER2-negative breast cancer. Phase I study data justify further clinical development of 99mTc-(HE)3-G3.
  •  
10.
  • Chernov, Vladimir, et al. (author)
  • Phase I Clinical Trial Using [Tc-99m]Tc-1-thio-D-glucose for Diagnosis of Lymphoma Patients
  • 2022
  • In: Pharmaceutics. - : MDPI AG. - 1999-4923. ; 14:6
  • Journal article (peer-reviewed)abstract
    • Similar to [F-18]-FDG, [Tc-99m]Tc-1-thio-D-glucose ([Tc-99m]Tc-TG) also binds to GLUT receptors. The aim of this Phase I study was to evaluate the safety, biodistribution and dosimetry of [Tc-99m]Tc-TG. Twelve lymphoma patients were injected with 729 +/- 102 MBq [Tc-99m]Tc-TG. Whole-body planar imaging was performed in 10 patients at 2, 4, 6 and 24 h after injection. In all 12 patients, SPECT/CT (at 2 h) and SPECT (at 4 and 6 h) imaging was performed. Vital signs and possible side effects were monitored during imaging and up to 7 days after injection. [Tc-99m]Tc-TG injections were well-tolerated and no side effects or alterations in blood and urine analyses data were observed. The highest absorbed dose was in the kidneys and urinary bladder wall, followed by the adrenals, prostate, bone marrow, lungs, myocardium, ovaries, uterus, liver and gall bladder wall. [Tc-99m]Tc-TG SPECT/CT revealed foci of high activity uptake in the lymph nodes of all nine patients with known nodal lesions. Extranodal lesions were detected in all nine cases. In one patient, a lesion in the humerus head, which was not detected by CT, was visualized using [Tc-99m]Tc-TG. Potentially, [Tc-99m]Tc-TG can be considered as an additional diagnostic method for imaging GLUT receptors in lymphoma patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view