SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Saito N) ;lar1:(gu)"

Sökning: WFRF:(Saito N) > Göteborgs universitet

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mullins, N., et al. (författare)
  • Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology
  • 2021
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 53, s. 817-829
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder is a heritable mental illness with complex etiology. We performed a genome-wide association study of 41,917 bipolar disorder cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci. Bipolar disorder risk alleles were enriched in genes in synaptic signaling pathways and brain-expressed genes, particularly those with high specificity of expression in neurons of the prefrontal cortex and hippocampus. Significant signal enrichment was found in genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics and anesthetics. Integrating expression quantitative trait locus data implicated 15 genes robustly linked to bipolar disorder via gene expression, encoding druggable targets such as HTR6, MCHR1, DCLK3 and FURIN. Analyses of bipolar disorder subtypes indicated high but imperfect genetic correlation between bipolar disorder type I and II and identified additional associated loci. Together, these results advance our understanding of the biological etiology of bipolar disorder, identify novel therapeutic leads and prioritize genes for functional follow-up studies. Genome-wide association analyses of 41,917 bipolar disorder cases and 371,549 controls of European ancestry provide new insights into the etiology of this disorder and identify novel therapeutic leads and potential opportunities for drug repurposing.
  •  
2.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Cossarizza, A., et al. (författare)
  • Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)
  • 2019
  • Ingår i: European Journal of Immunology. - : Wiley. - 0014-2980 .- 1521-4141. ; 49:10, s. 1457-1973
  • Tidskriftsartikel (refereegranskat)abstract
    • These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.
  •  
4.
  • Bakker, D. C. E., et al. (författare)
  • An update to the surface ocean CO2 atlas (SOCAT version 2)
  • 2014
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 6:1, s. 69-90
  • Tidskriftsartikel (refereegranskat)abstract
    • The Surface Ocean CO2 Atlas (SOCAT), an activity of the international marine carbon research community, provides access to synthesis and gridded fCO2 (fugacity of carbon dioxide) products for the surface oceans. Version 2 of SOCAT is an update of the previous release (version 1) with more data (increased from 6.3 million to 10.1 million surface water fCO 2 values) and extended data coverage (from 1968-2007 to 1968-2011). The quality control criteria, while identical in both versions, have been applied more strictly in version 2 than in version 1. The SOCAT website (http://www.socat.info/) has links to quality control comments, metadata, individual data set files, and synthesis and gridded data products. Interactive online tools allow visitors to explore the richness of the data. Applications of SOCAT include process studies, quantification of the ocean carbon sink and its spatial, seasonal, year-to-year and longerterm variation, as well as initialisation or validation of ocean carbon models and coupled climate-carbon models. © Author(s) 2014. CC Attribution 3.0 License.
  •  
5.
  • Andersson, E., et al. (författare)
  • Cerebral A beta deposition precedes reduced cerebrospinal fluid and serum A beta 42/A beta 40 ratios in the App(NL-F/NL-F) knock-in mouse model of Alzheimer's disease
  • 2023
  • Ingår i: Alzheimer's Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundA beta 42/A beta 40 ratios in cerebrospinal fluid (CSF) and blood are reduced in preclinical Alzheimer's disease (AD), but their temporal and correlative relationship with cerebral A beta pathology at this early disease stage is not well understood. In the present study, we aim to investigate such relationships using App knock-in mouse models of preclinical AD.MethodsCSF, serum, and brain tissue were collected from 3- to 18-month-old App(NL-F/NL-F) knock-in mice (n = 48) and 2-18-month-old App(NL/NL) knock-in mice (n = 35). The concentrations of A beta 42 and A beta 40 in CSF and serum were measured using Single molecule array (Simoa) immunoassays. Cerebral A beta plaque burden was assessed in brain tissue sections by immunohistochemistry and thioflavin S staining. Furthermore, the concentrations of A beta 42 in soluble and insoluble fractions prepared from cortical tissue homogenates were measured using an electrochemiluminescence immunoassay.ResultsIn App(NL-F/NL-F) knock-in mice, A beta 42/A beta 40 ratios in CSF and serum were significantly reduced from 12 and 16 months of age, respectively. The initial reduction of these biomarkers coincided with cerebral A beta pathology, in which a more widespread A beta plaque burden and increased levels of A beta 42 in the brain were observed from approximately 12 months of age. Accordingly, in the whole study population, A beta 42/A beta 40 ratios in CSF and serum showed a negative hyperbolic association with cerebral A beta plaque burden as well as the levels of both soluble and insoluble A beta 42 in the brain. These associations tended to be stronger for the measures in CSF compared with serum. In contrast, no alterations in the investigated fluid biomarkers or apparent cerebral A beta plaque pathology were found in App(NL/NL) knock-in mice during the observation time.ConclusionsOur findings suggest a temporal sequence of events in App(NL-F/NL-F) knock-in mice, in which initial deposition of A beta aggregates in the brain is followed by a decline of the A beta 42/A beta 40 ratio in CSF and serum once the cerebral A beta pathology becomes significant. Our results also indicate that the investigated biomarkers were somewhat more strongly associated with measures of cerebral A beta pathology when assessed in CSF compared with serum.
  •  
6.
  • Benitez, D. P., et al. (författare)
  • Knock-in models related to Alzheimer's disease: synaptic transmission, plaques and the role of microglia
  • 2021
  • Ingår i: Molecular Neurodegeneration. - : Springer Science and Business Media LLC. - 1750-1326. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Microglia are active modulators of Alzheimer's disease but their role in relation to amyloid plaques and synaptic changes due to rising amyloid beta is unclear. We add novel findings concerning these relationships and investigate which of our previously reported results from transgenic mice can be validated in knock-in mice, in which overexpression and other artefacts of transgenic technology are avoided. Methods App(NL-F) and App(NL-G-F) knock-in mice expressing humanised amyloid beta with mutations in App that cause familial Alzheimer's disease were compared to wild type mice throughout life. In vitro approaches were used to understand microglial alterations at the genetic and protein levels and synaptic function and plasticity in CA1 hippocampal neurones, each in relationship to both age and stage of amyloid beta pathology. The contribution of microglia to neuronal function was further investigated by ablating microglia with CSF1R inhibitor PLX5622. Results Both App knock-in lines showed increased glutamate release probability prior to detection of plaques. Consistent with results in transgenic mice, this persisted throughout life in App(NL-F) mice but was not evident in App(NL-G-F) with sparse plaques. Unlike transgenic mice, loss of spontaneous excitatory activity only occurred at the latest stages, while no change could be detected in spontaneous inhibitory synaptic transmission or magnitude of long-term potentiation. Also, in contrast to transgenic mice, the microglial response in both App knock-in lines was delayed until a moderate plaque load developed. Surviving PLX5266-depleted microglia tended to be CD68-positive. Partial microglial ablation led to aged but not young wild type animals mimicking the increased glutamate release probability in App knock-ins and exacerbated the App knock-in phenotype. Complete ablation was less effective in altering synaptic function, while neither treatment altered plaque load. Conclusions Increased glutamate release probability is similar across knock-in and transgenic mouse models of Alzheimer's disease, likely reflecting acute physiological effects of soluble amyloid beta. Microglia respond later to increased amyloid beta levels by proliferating and upregulating Cd68 and Trem2. Partial depletion of microglia suggests that, in wild type mice, alteration of surviving phagocytic microglia, rather than microglial loss, drives age-dependent effects on glutamate release that become exacerbated in Alzheimer's disease.
  •  
7.
  • Charette, M. A., et al. (författare)
  • The Transpolar Drift as a Source of Riverine and Shelf-Derived Trace Elements to the Central Arctic Ocean
  • 2020
  • Ingår i: Journal of Geophysical Research-Oceans. - : American Geophysical Union (AGU). - 2169-9275 .- 2169-9291. ; 125:5
  • Tidskriftsartikel (refereegranskat)abstract
    • A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river-influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high-resolution pan-Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and similar to 25-50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle-reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 +/- 0.4 Sv (10(6) m(3)s(-1)). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean. Plain Language Summary A major feature of the Arctic Ocean circulation is the Transpolar Drift (TPD), a surface current that carries ice and continental shelf-derived materials from Siberia across the North Pole to the North Atlantic Ocean. In 2015, an international team of oceanographers conducted a survey of trace elements in the Arctic Ocean, traversing the TPD. Near the North Pole, they observed much higher concentrations of trace elements in surface waters than in regions on either side of the current. These trace elements originated from land, and their journey across the Arctic Ocean is made possible by chemical reactions with dissolved organic matter that originates mainly in Arctic rivers. This study reveals the importance of rivers and shelf processes combined with strong ocean currents in supplying trace elements to the central Arctic Ocean and onward to the Atlantic. These trace element inputs are expected to increase as a result of permafrost thawing and increased river runoff in the Arctic, which is warming at a rate much faster than anywhere else on Earth. Since many of the trace elements are essential building blocks for ocean life, these processes could lead to significant changes in the marine ecosystems and fisheries of the Arctic Ocean.
  •  
8.
  • Finkel, R. S., et al. (författare)
  • Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy
  • 2017
  • Ingår i: New England Journal of Medicine. - 0028-4793. ; 377:18, s. 1723-1732
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND & para;& para;Spinal muscular atrophy is an autosomal recessive neuromuscular disorder that is caused by an insufficient level of survival motor neuron (SMN) protein. Nusinersen is an antisense oligonucleotide drug that modifies pre-messenger RNA splicing of the SMN2 gene and thus promotes increased production of full-length SMN protein.& para;& para;METHODS & para;& para;We conducted a randomized, double-blind, sham-controlled, phase 3 efficacy and safety trial of nusinersen in infants with spinal muscular atrophy. The primary end points were a motor-milestone response (defined according to results on the Hammersmith Infant Neurological Examination) and event-free survival (time to death or the use of permanent assisted ventilation). Secondary end points included over all survival and subgroup analyses of event-free survival according to disease duration at screening. Only the first primary end point was tested in a prespecified interim analysis. To control the overall type I error rate at 0.05, a hierarchical testing strategy was used for the second primary end point and the secondary end points in the final analysis.& para;& para;RESULTS & para;& para;In the interim analysis, a significantly higher percentage of infants in the nusinersen group than in the control group had a motor-milestone response (21 of 51 infants [41 %] vs. 0 of 27 [0%], P<0.001), and this result prompted early termination of the trial. In the final analysis, a significantly higher percentage of infants in the nusinersen group than in the control group had a motor-milestone response (37 of 73 infants [51%] vs. 0 of 37 [0%]), and the likelihood of event-free survival was higher in the nusinersen group than in the control group (hazard ratio for death or the use of permanent assisted ventilation, 0.53; P=0.005). The likelihood of overall survival was higher in the nusinersen group than in the control group (hazard ratio for death, 0.37; P=0.004), and infants with a shorter disease duration at screening were more likely than those with a longer disease duration to benefit from nusinersen. The incidence and severity of adverse events were similar in the two groups.& para;& para;CONCLUSIONS & para;& para;Among infants with spinal muscular atrophy, those who received nusinersen were more likely to be alive and have improvements in motor function than those in the control group. Early treatment may be necessary to maximize the benefit of the drug.
  •  
9.
  • Mercuri, E., et al. (författare)
  • Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy
  • 2018
  • Ingår i: New England Journal of Medicine. - 0028-4793. ; 378:7, s. 625-635
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND Nusinersen is an antisense oligonucleotide drug that modulates pre-messenger RNA splicing of the survival motor neuron 2 (SMN2) gene. It has been developed for the treatment of spinal muscular atrophy (SMA). METHODS We conducted a multicenter, double-blind, sham-controlled, phase 3 trial of nusinersen in 126 children with SMA who had symptom onset after 6 months of age. The children were randomly assigned, in a 2: 1 ratio, to undergo intrathecal administration of nusinersen at a dose of 12 mg (nusinersen group) or a sham procedure (control group) on days 1, 29, 85, and 274. The primary end point was the least-squares mean change from baseline in the Hammersmith Functional Motor Scale-Expanded (HFMSE) score at 15 months of treatment; HFMSE scores range from 0 to 66, with higher scores indicating better motor function. Secondary end points included the percentage of children with a clinically meaningful increase from baseline in the HFMSE score (>= 3 points), an outcome that indicates improvement in at least two motor skills. RESULTS In the prespecified interim analysis, there was a least-squares mean increase from baseline to month 15 in the HFMSE score in the nusinersen group (by 4.0 points) and a least-squares mean decrease in the control group (by -1.9 points), with a significant between-group difference favoring nusinersen (least-squares mean difference in change, 5.9 points; 95% confidence interval, 3.7 to 8.1; P< 0.001). This result prompted early termination of the trial. Results of the final analysis were consistent with results of the interim analysis. In the final analysis, 57% of the children in the nusinersen group as compared with 26% in the control group had an increase from baseline to month 15 in the HFMSE score of at least 3 points (P< 0.001), and the overall incidence of adverse events was similar in the nusinersen group and the control group (93% and 100%, respectively). CONCLUSIONS Among children with later-onset SMA, those who received nusinersen had significant and clinically meaningful improvement in motor function as compared with those in the control group. (Funded by Biogen and Ionis Pharmaceuticals; CHERISH ClinicalTrials. gov number, NCT02292537.)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy