1. |
- Kattge, Jens, et al.
(författare)
-
TRY plant trait database - enhanced coverage and open access
- 2020
-
Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
-
Tidskriftsartikel (refereegranskat)abstract
- Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
|
|
2. |
- Cohen, Alan A., et al.
(författare)
-
Co-existence of multiple trade-off currencies shapes evolutionary outcomes
- 2017
-
Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 12:12
-
Tidskriftsartikel (refereegranskat)abstract
- Evolutionary studies often assume that energy is the primary resource (i.e. “currency”) at the heart of the survival-reproduction trade-off, despite recent evidence to the contrary. The evolutionary consequences of having a single trade-off currency versus multiple competing currencies are unknown. Using simulations, we modeled the evolution of either a single physiological currency between reproduction and survival, or of multiple such currencies. For a wide array of model specifications varying functional forms and strengths of the tradeoffs, we show that the presence of multiple currencies (e.g. nutrients, time) generally results in the evolution of higher lifetime reproductive success through partial circumvention of such trade-offs. Evolution of the underlying physiology is also more highly contingent with multiple currencies. These results challenge the paradigm of a single survival-reproduction trade-off as central to life history evolution, suggesting greater roles for physiological constraints and contingency, and implying potential selection for evolution of multiple trade-off currencies.
|
|
3. |
- Jones, Owen R., et al.
(författare)
-
Diversity of ageing across the tree of life
- 2014
-
Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 505:7482, s. 169-
-
Tidskriftsartikel (refereegranskat)abstract
- Evolution drives, and is driven by, demography. A genotype moulds its phenotype's age patterns of mortality and fertility in an environment; these two patterns in turn determine the genotype's fitness in that environment. Hence, to understand the evolution of ageing, age patterns of mortality and reproduction need to be compared for species across the tree of life. However, few studies have done so and only for a limited range of taxa. Here we contrast standardized patterns over age for 11 mammals, 12 other vertebrates, 10 invertebrates, 12 vascular plants and a green alga. Although it has been predicted that evolution should inevitably lead to increasing mortality and declining fertility with age after maturity, there is great variation among these species, including increasing, constant, decreasing, humped and bowed trajectories for both long-and short-lived species. This diversity challenges theoreticians to develop broader perspectives on the evolution of ageing and empiricists to study the demography of more species.
|
|
4. |
|
|
5. |
- Smith, Annabel L., et al.
(författare)
-
Global gene flow releases invasive plants from environmental constraints on genetic diversity
- 2020
-
Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 117:8, s. 4218-4227
-
Tidskriftsartikel (refereegranskat)abstract
- When plants establish outside their native range, their ability to adapt to the new environment is influenced by both demography and dispersal. However, the relative importance of these two factors is poorly understood. To quantify the influence of demography and dispersal on patterns of genetic diversity underlying adaptation, we used data from a globally distributed demographic research network comprising 35 native and 18 nonnative populations of Plantago lanceolata. Species-specific simulation experiments showed that dispersal would dilute demographic influences on genetic diversity at local scales. Populations in the native European range had strong spatial genetic structure associated with geographic distance and precipitation seasonality. In contrast, nonnative populations had weaker spatial genetic structure that was not associated with environmental gradients but with higher within-population genetic diversity. Our findings show that dispersal caused by repeated, long-distance, human-mediated introductions has allowed invasive plant populations to overcome environmental constraints on genetic diversity, even without strong demographic changes. The impact of invasive plants may, therefore, increase with repeated introductions, highlighting the need to constrain future introductions of species even if they already exist in an area.
|
|
6. |
- Tye, Matthew R., et al.
(författare)
-
A demographic menage a trois : interactions between disturbances both amplify and dampen population dynamics of an endemic plant
- 2016
-
Ingår i: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 104:6, s. 1778-1788
-
Tidskriftsartikel (refereegranskat)abstract
- Natural and anthropogenic disturbances co-occur in most systems, but how they interact to shape demographic outcomes remains poorly understood. Such interactions may alter dynamics of populations in non-additive ways, making demographic predictions challenging when focusing on only one disturbance. Thus, understanding the interactive effects of such disturbances is critically important to determine the population viability of most species under a diversity of stressors. We used a hierarchical integral projection model (IPM), parameterized with 13years of field data across 20 populations, encompassing 2435 individuals of an endangered herb, Liatris ohlingerae. We examined interactive effects of vertebrate herbivory, fire and anthropogenic activities (sand roads) on vital rates (e.g. survival, growth, reproduction, recruitment) and ultimately on population growth rates (), to test the hypothesis that interactions amplify or dampen differences in depending on environmental contexts. We constructed megamatrices to determine coupled dynamics in individuals damaged vs. not damaged by herbivores in roadsides and in Florida scrub with different times since fire. We identified strong interactive effects of fire with herbivory and habitat with herbivory on vital rates and on population growth rates in the IPM model. We also found different patterns of variation in between habitat and time-since-fire scenarios; population growth rates were higher in roadside populations compared to scrub populations and declined with increasing time since fire. Herbivory had interactive effects with both fire and human disturbances on . Herbivory resulted in decreased differences in due to anthropogenic disturbance and slightly increased differences in due to time since fire.Synthesis. The co-occurrence of various disturbances may both amplify and dampen the effects of other disturbances on population growth rate, thus shaping complex population dynamics that are neither linear nor additive. These realistic nonlinearities represent challenges in understanding and projecting of population dynamics. Here, we examined the effects of various sources of disturbance on the population dynamics of an endangered plant species, finding complex interactions affecting population growth rates. We argue that integration of multiple, interacting stressors in IPMs will allow more accurate estimation of the overall effects of ecological processes on species viability.
|
|
7. |
- Villellas, Jesus, et al.
(författare)
-
Phenotypic plasticity masks range-wide genetic differentiation for vegetative but not reproductive traits in a short-lived plant
- 2021
-
Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 24:11, s. 2378-2393
-
Tidskriftsartikel (refereegranskat)abstract
- Genetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short-lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short-term perturbations. Combining a multi-treatment greenhouse experiment with observational field data throughout the range of a widespread short-lived herb, Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait–environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field-observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness.
|
|