SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Samuelson Lars) ;pers:(Lindgren David)"

Sökning: WFRF:(Samuelson Lars) > Lindgren David

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bi, Zhaoxia, et al. (författare)
  • High In-content InGaN nano-pyramids : Tuning crystal homogeneity by optimized nucleation of GaN seeds
  • 2018
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 123:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Uniform arrays of submicron hexagonal InGaN pyramids with high morphological and material homogeneity, reaching an indium composition of 20%, are presented in this work. The pyramids were grown by selective area metal-organic vapor phase epitaxy and nucleated from small openings in a SiN mask. The growth selectivity was accurately controlled with diffusion lengths of the gallium and indium species, more than 1 μm on the SiN surface. High material homogeneity of the pyramids was achieved by inserting a precisely formed GaN pyramidal seed prior to InGaN growth, leading to the growth of well-shaped InGaN pyramids delimited by six equivalent 10 1 ̄ 1 facets. Further analysis reveals a variation in the indium composition to be mediated by competing InGaN growth on two types of crystal planes, 10 1 ̄ 1 and (0001). Typically, the InGaN growth on 10 1 ̄ 1 planes is much slower than on the (0001) plane. The formation of the (0001) plane and the growth of InGaN on it were found to be dependent on the morphology of the GaN seeds. We propose growth of InGaN pyramids seeded by 10 1 ̄ 1-faceted GaN pyramids as a mean to avoid InGaN material grown on the otherwise formed (0001) plane, leading to a significant reduction of variations in the indium composition in the InGaN pyramids. The InGaN pyramids in this work can be used as a high-quality template for optoelectronic devices having indium-rich active layers, with a potential of reaching green, yellow, and red emissions for LEDs.
  •  
2.
  • Bi, Zhaoxia, et al. (författare)
  • InN quantum dots on GaN nanowires grown by MOVPE
  • 2014
  • Ingår i: physica status solidi (c). - : Wiley. - 1862-6351 .- 1610-1642 .- 1610-1634. ; 11, s. 421-424
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, growth of InN quantum dots (QDs) on GaN nanowires (NWs) by metal-organic vapour phase epitaxy is demonstrated, illustrating the feasibility to combine 0D and 1D structures for nitride semiconductors. Selective area growth was used to generate arrays of c-oriented GaN NWs using Si3N4 as the mask material. In general, InN QDs tend to form at the NW edges between the m-plane side facets, but the QD growth can also be tuned to the side facets by controlling the growth temperature and the growth rate. TEM characterization reveals that I1-type stacking faults are formed in the QDs and originate from the misfit dislocations at the InN/GaN interface. Photoluminescence measurement at 4 K shows that the peak shifts to high energy with reduced dot size. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  •  
3.
  •  
4.
  • Bi, Zhaoxia, et al. (författare)
  • Self-assembled InN quantum dots on side facets of GaN nanowires
  • 2018
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 123:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Self-assembled, atomic diffusion controlled growth of InN quantum dots was realized on the side facets of dislocation-free and c-oriented GaN nanowires having a hexagonal cross-section. The nanowires were synthesized by selective area metal organic vapor phase epitaxy. A 3 Å thick InN wetting layer was observed after growth, on top of which the InN quantum dots formed, indicating self-assembly in the Stranski-Krastanow growth mode. We found that the InN quantum dots can be tuned to nucleate either preferentially at the edges between GaN nanowire side facets, or directly on the side facets by tuning the adatom migration by controlling the precursor supersaturation and growth temperature. Structural characterization by transmission electron microscopy and reciprocal space mapping show that the InN quantum dots are close to be fully relaxed (residual strain below 1%) and that the c-planes of the InN quantum dots are tilted with respect to the GaN core. The strain relaxes mainly by the formation of misfit dislocations, observed with a periodicity of 3.2 nm at the InN and GaN hetero-interface. The misfit dislocations introduce I1 type stacking faults (...ABABCBC...) in the InN quantum dots. Photoluminescence investigations of the InN quantum dots show that the emissions shift to higher energy with reduced quantum dot size, which we attribute to increased quantum confinement.
  •  
5.
  •  
6.
  • Heurlin, Magnus, et al. (författare)
  • Continuous gas-phase synthesis of nanowires with tunable properties.
  • 2012
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 492:7427, s. 90-94
  • Tidskriftsartikel (refereegranskat)abstract
    • Semiconductor nanowires are key building blocks for the next generation of light-emitting diodes, solar cells and batteries. To fabricate functional nanowire-based devices on an industrial scale requires an efficient methodology that enables the mass production of nanowires with perfect crystallinity, reproducible and controlled dimensions and material composition, and low cost. So far there have been no reports of reliable methods that can satisfy all of these requirements. Here we show how aerotaxy, an aerosol-based growth method, can be used to grow nanowires continuously with controlled nanoscale dimensions, a high degree of crystallinity and at a remarkable growth rate. In our aerotaxy approach, catalytic size-selected Au aerosol particles induce nucleation and growth of GaAs nanowires with a growth rate of about 1 micrometre per second, which is 20 to 1,000 times higher than previously reported for traditional, substrate-based growth of nanowires made of group III-V materials. We demonstrate that the method allows sensitive and reproducible control of the nanowire dimensions and shape--and, thus, controlled optical and electronic properties--through the variation of growth temperature, time and Au particle size. Photoluminescence measurements reveal that even as-grown nanowires have good optical properties and excellent spectral uniformity. Detailed transmission electron microscopy investigations show that our aerotaxy-grown nanowires form along one of the four equivalent〈111〉B crystallographic directions in the zincblende unit cell, which is also the preferred growth direction for III-V nanowires seeded by Au particles on a single-crystal substrate. The reported continuous and potentially high-throughput method can be expected substantially to reduce the cost of producing high-quality nanowires and may enable the low-cost fabrication of nanowire-based devices on an industrial scale.
  •  
7.
  • Heurlin, Magnus, et al. (författare)
  • Structural Properties of Wurtzite InP-InGaAs Nanowire Core-Shell Heterostructures
  • 2015
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 15:4, s. 2462-2467
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on growth and characterization of wurtzite InP-In1-xGaxAs core-shell nanowire heterostructures. A range of nanowire structures with different Ga concentration in the shell was characterized with transmission electron microscopy and X-ray diffraction. We found that the main part of the nanowires has a pure wurtzite crystal structure, with occasional stacking faults occurring only at the top and bottom. This allowed us to determine the structural properties of wurtzite In1-xGaxAs. The InP-In1-xGaxAs core-shell nanowires show a triangular and hexagonal facet structure of {1100} and {10 (10) over bar} planes. X-ray diffraction measurements showed that the core and the shell are pseudomorphic along the c-axis, and the strained axial lattice constant is closer to the relaxed In1-xGaxAs shell. Microphotoluminescence measurements of the nanowires show emission in the infrared regime, which makes them suitable for applications in optical communication.
  •  
8.
  • Heurlin, Magnus, et al. (författare)
  • Synthesis of Doped InP Core-Shell Nanowires Evaluated Using Hall Effect Measurements.
  • 2014
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 14:2, s. 749-753
  • Tidskriftsartikel (refereegranskat)abstract
    • InP core-shell nanowire pn-junctions doped with Zn and Sn have been investigated in terms of growth morphology and shell carrier concentration. The carrier concentrations were evaluated using spatially resolved Hall effect measurements and show improved homogeneity compared to previous investigations, attributed to the use of Sn as the n-type dopant. Anisotropies in the growth rate of different facets are found for different doping levels that in turn affects the migration of Sn and In on the nanowire surface. A route for increasing the In migration length to obtain a more homogeneous shell thickness is presented.
  •  
9.
  • Jain, Vishal, 1989-, et al. (författare)
  • Large Area Photodetectors at 1.3/1.55 μm Based on InP/InAsP NWs
  • 2014
  • Konferensbidrag (refereegranskat)abstract
    • Optical communication systems benefit a lot from APDs due to their increased photocurrent gain as compared to conventional photodetectors. An avalanche region in a high bandgap material is especially useful to avoid the tunneling leakage currents in smaller bandgap materials needed for absorption at 1.3/1.55 µm wavelengths. Self-assembled III-V semiconductor nanowires have a key advantage owing to the enhanced absorption due to optical resonance effects and the strain relaxation in NWs, thus facilitating monolithic integration of different heterostructures on cheaper substrates. Here, we present electrical and optical results from large ensembles of InP/InAsP NWs, axially grown on p+ InP substrates. The NW base consists of an InP p-n junction acting as the avalanche region followed by an InP/InAsP absorption region, and ending with a top InP n+-segment. The 130nm diameter NW arrays are contacted in a vertical geometry using SiO2 as the insulating layer and ITO as the top contact. The n-doping in the avalanche region is varied to study it’s influence on the avalanche mechanism. Also the bandgap in the absorption region is varied from pure InP to smaller bandgap InAsP by varying the As content. Clear interband signals from different crystal phases of InP/InAsP are observed in photocurrent spectroscopy. Moreover, the photocurrent spectra are consistent with spatially resolved photoluminescence signals. We also report on polarization and angle dependent photocurrent response of the NW array.
  •  
10.
  • Jain, Vishal, 1989-, et al. (författare)
  • Large area photodetectors based on InP NWs with InAs/InAsP QWs
  • 2014
  • Konferensbidrag (refereegranskat)abstract
    • Focal plane arrays have a widespread use in infrared imaging, which often rely on cryogenic cooling to curtail the dark current level necessary for a reasonable signal-to-noise ratio. Quantum well (QW) infrared photodetectors are uniform over large areas, but suffer from a severe drawback related to the selection rules for intersubband absorption. An interesting alternative is self-assembled III-V nanowires offering a key advantage owing to the enhanced absorption by optical resonance effects and strain relaxation.We present electrical and optical results from large ensembles of n+-i-n+ InP NWs, axially grown on InP substrates with InAs/InAsP QWs embedded within the i-segment, designed for both interband and intersubband detection. The NWs are contacted in a vertical geometry using 50 nm SiO2 as the insulating layer and ITO as the top contact. We first investigate the crystal quality of the InAsP QWs grown in 180 nm diameter NWs, using PL, CL and TEM. To achieve more abrupt InAs/InAsP QWs, we grow 130 nm diameter NWs and deplete the In present in the Au catalysts. The effect of n-doping on the device performance is studied by fabricating two different NW geometries, with and without an n+-segment grown before the nominal i-segment in the NW. In addition, the position of the QWs within the i-segment is varied to further scrutinize effects related to doping and crystal structure. Finally, we report spectrally resolved photocurrent results from the QWs in the near-infrared region and discuss about the further developments needed for intersubband detection.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy