SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sauer T) ;lar1:(cth)"

Sökning: WFRF:(Sauer T) > Chalmers tekniska högskola

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Meech, K. J., et al. (författare)
  • EPOXI: Comet 103P/Hartley 2 Observations from a Worldwide Campaign
  • 2011
  • Ingår i: Astrophysical Journal Letters. - London : IOP. - 2041-8213 .- 2041-8205. ; 734:L1, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Earth- and space-based observations provide synergistic information for space mission encounters by providing data over longer timescales, at different wavelengths and using techniques that are impossible with an in situ flyby. We report here such observations in support of the EPOXI spacecraft flyby of comet 103P/Hartley 2. The nucleus is small and dark, and exhibited a very rapidly changing rotation period. Prior to the onset of activity, the period was ~16.4?hr. Starting in 2010 August the period changed from 16.6?hr to near 19?hr in December. With respect to dust composition, most volatiles and carbon and nitrogen isotope ratios, the comet is similar to other Jupiter-family comets. What is unusual is the dominance of CO 2 -driven activity near perihelion, which likely persists out to aphelion. Near perihelion the comet nucleus was surrounded by a large halo of water-ice grains that contributed significantly to the total water production.
  •  
2.
  • Blasche, Sonja, et al. (författare)
  • Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community
  • 2021
  • Ingår i: Nature Microbiology. - : Springer Science and Business Media LLC. - 2058-5276. ; 6:2, s. 196-208
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbial communities often undergo intricate compositional changes yet also maintain stable coexistence of diverse species. The mechanisms underlying long-term coexistence remain unclear as system-wide studies have been largely limited to engineered communities, ex situ adapted cultures or synthetic assemblies. Here, we show how kefir, a natural milk-fermenting community of prokaryotes (predominantly lactic and acetic acid bacteria) and yeasts (family Saccharomycetaceae), realizes stable coexistence through spatiotemporal orchestration of species and metabolite dynamics. During milk fermentation, kefir grains (a polysaccharide matrix synthesized by kefir microorganisms) grow in mass but remain unchanged in composition. In contrast, the milk is colonized in a sequential manner in which early members open the niche for the followers by making available metabolites such as amino acids and lactate. Through metabolomics, transcriptomics and large-scale mapping of inter-species interactions, we show how microorganisms poorly suited for milk survive in—and even dominate—the community, through metabolic cooperation and uneven partitioning between grain and milk. Overall, our findings reveal how inter-species interactions partitioned in space and time lead to stable coexistence.
  •  
3.
  • Canelas, A.B., et al. (författare)
  • Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains
  • 2010
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 1:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The field of systems biology is often held back by difficulties in obtaining comprehensive, high-quality, quantitative data sets. In this paper, we undertook an interlaboratory effort to generate such a data set for a very large number of cellular components in the yeast Saccharomyces cerevisiae, a widely used model organism that is also used in the production of fuels, chemicals, food ingredients and pharmaceuticals. With the current focus on biofuels and sustainability, there is much interest in harnessing this species as a general cell factory. In this study, we characterized two yeast strains, under two standard growth conditions. We ensured the high quality of the experimental data by evaluating a wide range of sampling and analytical techniques. Here we show significant differences in the maximum specific growth rate and biomass yield between the two strains. On the basis of the integrated analysis of the high-throughput data, we hypothesize that differences in phenotype are due to differences in protein metabolism.
  •  
4.
  • Güsten, R., et al. (författare)
  • APEX - The Atacama Pathfinder Experiment
  • 2006
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 6267 I
  • Konferensbidrag (refereegranskat)abstract
    • APEX, the Atacama Pathfinder Experiment, has been successfully commissioned and is in operation now. This novel submillimeter telescope is located at 5107 m altitude on Llano de Chajnantor in the Chilean High Andes, on what is considered one of the world's outstanding sites for submillimeter astronomy. The primary reflector with 12 m diameter has been carefully adjusted by means of holography. Its surface smoothness of 17-18 μm makes APEX suitable for observations up to 200 μm, through all atmospheric submm windows accessible from the ground.
  •  
5.
  • Rago, G., et al. (författare)
  • CARS microscopy for the visualization of micrometer-sized iron oxide MRI contrast agents in living cells
  • 2011
  • Ingår i: Biomedical Optics Express. - 2156-7085. ; 2:9, s. 2470-2483
  • Tidskriftsartikel (refereegranskat)abstract
    • Micrometer-sized iron oxide particles (MPIOs) attract increasing interest as contrast agents for cellular tracking by clinical Magnetic Resonance Imaging (MRI). Despite the great potential of MPIOs for in vivo imaging of labeled cells, little is known on the intracellular localization of these particles following uptake due to the lack of techniques with the ability to monitor the particle uptake in vivo at single-cell level. Here, we show that coherent anti-Stokes Raman scattering (CARS) microscopy enables non-invasive, label-free imaging of MPIOs in living cells with sub-micron resolution in three dimensions. CARS allows simultaneous visualization of the cell framework and the MPIOs, where the particles can be readily distinguished from other cellular components of comparable dimensions, and localized inside the cell.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy