SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Saunders P) ;lar1:(cth)"

Sökning: WFRF:(Saunders P) > Chalmers tekniska högskola

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Overview of the JET results
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:10
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Addazi, A., et al. (författare)
  • New high-sensitivity searches for neutrons converting into antineutrons and/or sterile neutrons at the HIBEAM/NNBAR experiment at the European Spallation Source
  • 2021
  • Ingår i: Journal of Physics G. - : Institute of Physics Publishing (IOPP). - 0954-3899 .- 1361-6471. ; 48:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The violation of baryon number, , is an essential ingredient for the preferential creation of matter over antimatter needed to account for the observed baryon asymmetry in the Universe. However, such a process has yet to be experimentally observed. The HIBEAM/NNBAR program is a proposed two-stage experiment at the European Spallation Source to search for baryon number violation. The program will include high-sensitivity searches for processes that violate baryon number by one or two units: free neutron–antineutron oscillation () via mixing, neutron–antineutron oscillation via regeneration from a sterile neutron state (), and neutron disappearance (n → n'); the effective process of neutron regeneration () is also possible. The program can be used to discover and characterize mixing in the neutron, antineutron and sterile neutron sectors. The experiment addresses topical open questions such as the origins of baryogenesis and the nature of dark matter, and is sensitive to scales of new physics substantially in excess of those available at colliders. A goal of the program is to open a discovery window to neutron conversion probabilities (sensitivities) by up to three orders of magnitude compared with previous searches. The opportunity to make such a leap in sensitivity tests should not be squandered. The experiment pulls together a diverse international team of physicists from the particle (collider and low energy) and nuclear physics communities, while also including specialists in neutronics and magnetics.
  •  
3.
  • Albert, F., et al. (författare)
  • Betatron x-ray radiation from laser-plasma accelerators driven by femtosecond and picosecond laser systems
  • 2018
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1089-7674 .- 1070-664X. ; 25:5
  • Tidskriftsartikel (refereegranskat)abstract
    • A comparative experimental study of betatron x-ray radiation from laser wakefield acceleration in the blowout and self-modulated regimes is presented. Our experiments use picosecond duration laser pulses up to 150 J (self-modulated regime) and 60 fs duration laser pulses up to 10 J (blowout regime), for plasmas with electronic densities on the order of 1019cm-3. In the self-modulated regime, where betatron radiation has been very little studied compared to the blowout regime, electrons accelerated in the wake of the laser pulse are subject to both the longitudinal plasma and transverse laser electrical fields. As a result, their motion within the wake is relatively complex; consequently, the experimental and theoretical properties of the x-ray source based on self-modulation differ from the blowout regime of laser wakefield acceleration. In our experimental configuration, electrons accelerated up to about 250 MeV and betatron x-ray spectra with critical energies of about 10-20 keV and photon fluxes between 108and 1010photons/eV Sr are reported. Our experiments open the prospect of using betatron x-ray radiation for applications, and the source is competitive with current x-ray backlighting methods on multi-kilojoule laser systems.
  •  
4.
  •  
5.
  • Loryan, Irena, 1977-, et al. (författare)
  • Quantitative Assessment of Drug Delivery to Tissues and Association with Phospholipidosis: A Case Study with Two Structurally Related Diamines in Development
  • 2017
  • Ingår i: Molecular Pharmaceutics. - : American Chemical Society (ACS). - 1543-8384 .- 1543-8392. ; 14:12, s. 4362-4373
  • Tidskriftsartikel (refereegranskat)abstract
    • Drug induced phospholipidosis (PLD) may be observed in the preclinical phase of drug development and pose strategic questions. As lysosomes have a central role in pathogenesis of PLD, assessment of lysosomal concentrations is important for understanding the pharmacokinetic basis of PLD manifestation and forecast of potential clinical appearance. Herein we present a systematic approach to provide insight into tissue-specific PLD by evaluation of unbound intracellular and lysosomal (reflecting acidic organelles) concentrations of two structurally related diprotic amines, GRT1 and GRT2. Their intratissue distribution was assessed using brain and lung slice assays. GRT1 induced PLD both in vitro and in vivo. GRT1 showed a high intracellular accumulation that was more pronounced in the lung, but did not cause cerebral PLD due to its effective efflux at the blood-brain barrier. Compared to GRT1, GRT2 revealed higher interstitial fluid concentrations in lung and brain, but more than 30-fold lower lysosomal trapping capacity. No signs of PLD were seen with GRT2. The different profile of GRT2 relative to GRT1 is due to a structural change resulting in a reduced basicity of one amino group. Hence, by distinct chemical modifications, undesired lysosomal trapping can be separated from desired drug delivery into different organs. In summary, assessment of intracellular unbound concentrations was instrumental in delineating the intercompound and intertissue differences in PLD induction in vivo and could be applied for identification of potential lysosomotropic compounds in drug development.
  •  
6.
  • Priyadarshi, S., et al. (författare)
  • Parallel Transient Simulation of Multiphysics Circuits Using Delay-Based Partitioning
  • 2012
  • Ingår i: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. - : Institute of Electrical and Electronics Engineers (IEEE). - 1937-4151 .- 0278-0070. ; 31:10, s. 1522-1535
  • Tidskriftsartikel (refereegranskat)abstract
    • A parallel transient simulation technique for multiphysics circuits is presented. The technique develops partitions utilizing the inherent delay present within a circuit and between physical domains. A state-variable-based circuit delay element is presented, which implements the coupling between two spatially or temporally isolated circuit partitions. A parallel delay-based iterative approach for interfacing delay-partitioned subcircuits is applied, which achieves the reasonable accuracy of nonparallel circuit simulation if both incorporate the same interblock delay. The partitioned subcircuits are distributed to different cores of a shared-memory multicore processor and solved in parallel. A multithreaded implementation of the methodology using OpenMP is presented. Examples showing superlinear speedup compared to unpartitioned single-core simulation using the direct method are presented. This paper also discusses the impact of load balancing and absolute delay on simulation speedup.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy