SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schellenberg Gerard D) "

Sökning: WFRF:(Schellenberg Gerard D)

  • Resultat 1-10 av 24
  • [1]23Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Escott-Price, Valentina, et al. (författare)
  • Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease
  • 2014
  • Ingår i: PLOS ONE. - 1932-6203. ; 9:6, s. e94661-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls. Principal Findings: In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p = 1.4x10(-6)) and 14 (IGHV1-67 p = 7.9x10(-8)) which indexed novel susceptibility loci. Significance: The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer's disease.
  •  
3.
  • Jones, Lesley, et al. (författare)
  • Convergent genetic and expression data implicate immunity in Alzheimer's disease
  • 2015
  • Ingår i: Alzheimer's & Dementia. - 1552-5260 .- 1552-5279. ; 11:6, s. 658-671
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Late-onset Alzheimer's disease (AD) is heritable with 20 genes showing genome-wide association in the International Genomics of Alzheimer's Project (IGAP). To identify the biology underlying the disease, we extended these genetic data in a pathway analysis. Methods: The ALIGATOR and GSEA algorithms were used in the IGAP data to identify associated functional pathways and correlated gene expression networks in human brain. Results: ALIGATOR identified an excess of curated biological pathways showing enrichment of association. Enriched areas of biology included the immune response (P = 3.27 X 10(-12) after multiple testing correction for pathways), regulation of endocytosis (P = 1.31 X 10(-11)), cholesterol transport (P = 2.96 X 10(-9)), and proteasome-ubiquitin activity (P = 1.34 X 10(-6)). Correlated gene expression analysis identified four significant network modules, all related to the immune response (corrected P = .002-.05). Conclusions: The immime response, regulation of endocytosis, cholesterol transport, and protein ubiquitination represent prime targets for AD therapeutics.
  •  
4.
  •  
5.
  • Basun, H., et al. (författare)
  • Clinical and neuropathological features of the arctic APP gene mutation causing early-onset Alzheimer disease
  • 2008
  • Ingår i: Archives of neurology. - 0003-9942 .- 1538-3687. ; 65:4, s. 499-505
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: A majority of mutations within the beta-amyloid region of the amyloid precursor protein (APP) gene cause inherited forms of intracerebral hemorrhage. Most of these mutations may also cause cognitive impairment, but the Arctic APP mutation is the only known intra-beta-amyloid mutation to date causing the more typical clinical picture of Alzheimer disease. OBJECTIVE: To describe features of 1 Swedish and 1 American family with the previously reported Arctic APP mutation. DESIGN, SETTING, AND PARTICIPANTS: Affected and nonaffected carriers of the Arctic APP mutation from the Swedish and American families were investigated clinically. In addition, 1 brain from each family was investigated neuropathologically. RESULTS: The clinical picture, with age at disease onset in the sixth to seventh decade of life and dysfunction in multiple cognitive areas, is indicative of Alzheimer disease and similar to the phenotype for other Alzheimer disease APP mutations. Several affected mutation carriers displayed general brain atrophy and reduced blood flow of the parietal lobe as demonstrated by magnetic resonance imaging and single-photon emission computed tomography. One Swedish case and 1 American case with the Arctic APP mutation came to autopsy, and both showed no signs of hemorrhage but revealed severe congophilic angiopathy, region-specific neurofibrillary tangle pathological findings, and abundant amyloid plaques. Intriguingly, most plaques from both of these cases had a characteristic ringlike character. CONCLUSIONS: Overall, our findings corroborate that the Arctic APP mutation causes a clinical and neuropathological picture compatible with Alzheimer disease.
  •  
6.
  • Wang, Li-San, et al. (författare)
  • Rarity of the Alzheimer Disease-Protective APP A673T Variant in the United States.
  • 2015
  • Ingår i: JAMA neurology. - 2168-6157. ; 72:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, a rare variant in the amyloid precursor protein gene (APP) was described in a population from Iceland. This variant, in which alanine is replaced by threonine at position 673 (A673T), appears to protect against late-onset Alzheimer disease (AD). We evaluated the frequency of this variant in AD cases and cognitively normal controls to determine whether this variant will significantly contribute to risk assessment in individuals in the United States.
  •  
7.
  • Van Deerlin, Vivian M, et al. (författare)
  • Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions
  • 2010
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 42:3, s. 234-239
  • Tidskriftsartikel (refereegranskat)abstract
    • Frontotemporal lobar degeneration (FTLD) is the second most common cause of presenile dementia. The predominant neuropathology is FTLD with TAR DNA-binding protein (TDP-43) inclusions (FTLD-TDP). FTLD-TDP is frequently familial, resulting from mutations in GRN (which encodes progranulin). We assembled an international collaboration to identify susceptibility loci for FTLD-TDP through a genome-wide association study of 515 individuals with FTLD-TDP. We found that FTLD-TDP associates with multiple SNPs mapping to a single linkage disequilibrium block on 7p21 that contains TMEM106B. Three SNPs retained genome-wide significance following Bonferroni correction (top SNP rs1990622, P = 1.08 x 10(-11); odds ratio, minor allele (C) 0.61, 95% CI 0.53-0.71). The association replicated in 89 FTLD-TDP cases (rs1990622; P = 2 x 10(-4)). TMEM106B variants may confer risk of FTLD-TDP by increasing TMEM106B expression. TMEM106B variants also contribute to genetic risk for FTLD-TDP in individuals with mutations in GRN. Our data implicate variants in TMEM106B as a strong risk factor for FTLD-TDP, suggesting an underlying pathogenic mechanism.
  •  
8.
  • Pinto, Dalila, et al. (författare)
  • Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders.
  • 2014
  • Ingår i: American journal of human genetics. - 1537-6605. ; 94:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10(-5)) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10(-15), ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation.
  •  
9.
  • Kalimo, Hannu, et al. (författare)
  • The Arctic AβPP mutation leads to Alzheimer's disease pathology with highly variable topographic deposition of differentially truncated Aβ
  • 2013
  • Ingår i: Acta neuropathologica communications. - 2051-5960. ; 1:1, s. 60-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The Arctic mutation (p.E693G/p.E22G)fs within the β-amyloid (Aβ) region of the β-amyloid precursor protein gene causes an autosomal dominant disease with clinical picture of typical Alzheimer's disease. Here we report the special character of Arctic AD neuropathology in four deceased patients.RESULTS: Aβ deposition in the brains was wide-spread (Thal phase 5) and profuse. Virtually all parenchymal deposits were composed of non-fibrillar, Congo red negative Aβ aggregates. Congo red only stained angiopathic vessels. Mass spectrometric analyses showed that Aβ deposits contained variably truncated and modified wild type and mutated Aβ species. In three of four Arctic AD brains, most cerebral cortical plaques appeared targetoid with centres containing C-terminally (beyond aa 40) and variably N-terminally truncated Aβ surrounded by coronas immunopositive for Aβx-42. In the fourth patient plaque centres contained almost no Aβ making the plaques ring-shaped. The architectural pattern of plaques also varied between different anatomic regions. Tau pathology corresponded to Braak stage VI, and appeared mainly as delicate neuropil threads (NT) enriched within Aβ plaques. Dystrophic neurites were scarce, while neurofibrillary tangles were relatively common. Neuronal perikarya within the Aβ plaques appeared relatively intact.CONCLUSIONS: In Arctic AD brain differentially truncated abundant Aβ is deposited in plaques of variable numbers and shapes in different regions of the brain (including exceptional targetoid plaques in neocortex). The extracellular non-fibrillar Aβ does not seem to cause overt damage to adjacent neurons or to induce formation of neurofibrillary tangles, supporting the view that intracellular Aβ oligomers are more neurotoxic than extracellular Aβ deposits. However, the enrichment of NTs within plaques suggests some degree of intra-plaque axonal damage including accumulation of hp-tau, which may impair axoplasmic transport, and thereby contribute to synaptic loss. Finally, similarly as the cotton wool plaques in AD resulting from exon 9 deletion in the presenilin-1 gene, the Arctic plaques induced only modest glial and inflammatory tissue reaction.
  •  
10.
  • Pinto, Dalila, et al. (författare)
  • Functional impact of global rare copy number variation in autism spectrum disorders.
  • 2010
  • Ingår i: Nature. - 0028-0836. ; 466:7304, s. 368-372
  • Tidskriftsartikel (refereegranskat)abstract
    • The autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in reciprocal social interaction and communication, and the presence of restricted and repetitive behaviours. Individuals with an ASD vary greatly in cognitive development, which can range from above average to intellectual disability. Although ASDs are known to be highly heritable ( approximately 90%), the underlying genetic determinants are still largely unknown. Here we analysed the genome-wide characteristics of rare (<1% frequency) copy number variation in ASD using dense genotyping arrays. When comparing 996 ASD individuals of European ancestry to 1,287 matched controls, cases were found to carry a higher global burden of rare, genic copy number variants (CNVs) (1.19 fold, P = 0.012), especially so for loci previously implicated in either ASD and/or intellectual disability (1.69 fold, P = 3.4 x 10(-4)). Among the CNVs there were numerous de novo and inherited events, sometimes in combination in a given family, implicating many novel ASD genes such as SHANK2, SYNGAP1, DLGAP2 and the X-linked DDX53-PTCHD1 locus. We also discovered an enrichment of CNVs disrupting functional gene sets involved in cellular proliferation, projection and motility, and GTPase/Ras signalling. Our results reveal many new genetic and functional targets in ASD that may lead to final connected pathways.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24
  • [1]23Nästa
Typ av publikation
tidskriftsartikel (24)
Typ av innehåll
refereegranskat (23)
övrigt vetenskapligt (1)
Författare/redaktör
Schellenberg, Gerard ... (24)
Haines, Jonathan L (15)
Hakonarson, Hakon (11)
Buxbaum, Joseph D (11)
Pericak-Vance, Marga ... (11)
Gill, Michael (9)
visa fler...
Bennett, David A. (8)
Trojanowski, John Q (8)
Geschwind, Daniel H (8)
Schellenberg, GD (8)
De Jager, Philip L. (7)
Hardy, John (7)
Lannfelt, L (7)
Ingelsson, M (7)
Lannfelt, Lars (6)
Ingelsson, Martin (6)
Amouyel, Philippe (6)
Lopez, Oscar L. (6)
Van Duijn, Cornelia ... (6)
Gillberg, Christophe ... (6)
Leboyer, Marion (6)
Bacchelli, Elena (6)
Bailey, Anthony J (6)
Baird, Gillian (6)
Bolton, Patrick F. (6)
Bourgeron, Thomas (6)
Dawson, Geraldine (6)
Folstein, Susan E (6)
Green, Jonathan (6)
Klauck, Sabine M (6)
Lord, Catherine (6)
Maestrini, Elena (6)
Parr, Jeremy R (6)
Poustka, Fritz (6)
Roge, Bernadette (6)
Van Engeland, Herman (6)
Wallace, Simon (6)
Wittemeyer, Kerstin (6)
Zwaigenbaum, Lonnie (6)
Betancur, Catalina (6)
Cook, Edwin H (6)
Coon, Hilary (6)
Monaco, Anthony P (6)
Scherer, Stephen W (6)
Sutcliffe, James S (6)
Szatmari, Peter (6)
Vieland, Veronica J (6)
Wijsman, Ellen M (6)
Hallmayer, Joachim (6)
Choi, Seung Hoan (6)
visa färre...
Lärosäte
Göteborgs universitet (10)
Uppsala universitet (5)
Stockholms universitet (5)
Lunds universitet (5)
Karolinska Institutet (5)
Umeå universitet (2)
visa fler...
Linköpings universitet (1)
visa färre...
Språk
Engelska (24)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (21)
Naturvetenskap (2)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy