SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Schinnerer E.) "

Search: WFRF:(Schinnerer E.)

  • Result 1-10 of 32
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • de Blok, W.J.G., et al. (author)
  • an overview of the MHONGOOSE survey: Observing nearby galaxies with MeerKAT
  • 2016
  • In: Proceedings of Science. - 1824-8039.
  • Conference paper (peer-reviewed)abstract
    • MHONGOOSE is a deep survey of the neutral hydrogen distribution in a representative sample of 30 nearby disk and dwarf galaxies with H I masses from ∼ 106 to ∼ 1011 M, and luminosities from MR ∼ 12 to MR ∼ −22. The sample is selected to uniformly cover the available range in log(MHI). Our extremely deep observations, down to H I column density limits of well below 1018 cm−2 — or a few hundred times fainter than the typical H I disks in galaxies — will directly detect the effects of cold accretion from the intergalactic medium and the links with the cosmic web. These observations will be the first ever to probe the very low-column density neutral gas in galaxies at these high resolutions. Combination with data at other wavelengths, most of it already available, will enable accurate modeling of the properties and evolution of the mass components in these galaxies and link these with the effects of environment, dark matter distribution, and other fundamental properties such as halo mass and angular momentum. MHONGOOSE can already start addressing some of the SKA-1 science goals and will provide a comprehensive inventory of the processes driving the transformation and evolution of galaxies in the nearby universe at high resolution and over 5 orders of magnitude in column density. It will be a Nearby Galaxies Legacy Survey that will be unsurpassed until the advent of the SKA, and can serve as a highly visible, lasting statement of MeerKAT’s capabilities.
  •  
2.
  • Baran, N., et al. (author)
  • The XXL Survey IX. Optical overdensity and radio continuum analysis of a supercluster at z=0.43
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 592
  • Research review (peer-reviewed)abstract
    • We present observations with the Karl G. Jansky Very Large Array (VLA) at 3 GHz (10 cm) toward a sub-field of the XXL-North 25 deg(2) field targeting the first supercluster discovered in the XXL Survey. The structure has been found at a spectroscopic redshift of 0.43 and extending over 0.degrees 35x0.degrees 1 on the sky. The aim of this paper is twofold. First, we present the 3 GHz VLA radio continuum observations, the final radio mosaic and radio source catalogue, and, second, we perform a detailed analysis of the supercluster in the optical and radio regimes using photometric redshifts from the CFHTLS survey and our new VLA-XXL data. Our final 3 GHz radio mosaic has a resolution of 3 ''.2 x 1 ''.9, and encompasses an area of 41'x41' with rms noise level lower than similar to 20 mu Jy beam(-1). The noise in the central 15'x15' region is approximate to 11 mu Jy beam(-1). From the mosaic we extract a catalogue of 155 radio sources with signal-to-noise ratio (S/N) >= 6, eight of which are large, multicomponent sources, and 123 (79%) of which can be associated with optical sources in the CFHTLS W1 catalogue. Applying Voronoi tessellation analysis (VTA) in the area around the X-ray identified supercluster using photometric redshifts from the CFHTLS survey we identify a total of seventeen overdensities at z(phot) = 0.35-0.50, 7 of which are associated with clusters detected in the XMM-Newton XXL data. We find a mean photometric redshift of 0.43 for our overdensities, consistent with the spectroscopic redshifts of the brightest cluster galaxies of seven X-ray detected clusters. The full VTA-identified structure extends over similar to 0.degrees 6x0.degrees 2on the sky, which corresponds to a physical size of similar to 12x4 Mpc(2) at z = 0.43. No large radio galaxies are present within the overdensities, and we associate eight (S/N > 7) radio sources with potential group/cluster member galaxies. The spatial distribution of the red and blue VTA-identified potential group member galaxies, selected by their observed g -r colours, suggests that the clusters are not virialised yet, but are dynamically young, as expected for hierarchical structure growth in a Lambda CDM universe. Further spectroscopic data are required to analyse the dynamical state of the groups.
  •  
3.
  • Henshaw, Jonathan D., et al. (author)
  • Ubiquitous velocity fluctuations throughout the molecular interstellar medium
  • 2020
  • In: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 4:11, s. 1064-1071
  • Journal article (peer-reviewed)abstract
    • The density structure of the interstellar medium determines where stars form and release energy, momentum and heavy elements, driving galaxy evolution1–4. Density variations are seeded and amplified by gas motion, but the exact nature of this motion is unknown across spatial scales and galactic environments5. Although dense star-forming gas probably emerges from a combination of instabilities6,7, convergent flows8 and turbulence9, establishing the precise origin is challenging because it requires gas motion to be quantified over many orders of magnitude in spatial scale. Here we measure10–12 the motion of molecular gas in the Milky Way and in nearby galaxy NGC 4321, assembling observations that span a spatial dynamic range 10−1–103 pc. We detect ubiquitous velocity fluctuations across all spatial scales and galactic environments. Statistical analysis of these fluctuations indicates how star-forming gas is assembled. We discover oscillatory gas flows with wavelengths ranging from 0.3–400 pc. These flows are coupled to regularly spaced density enhancements that probably form via gravitational instabilities13,14. We also identify stochastic and scale-free velocity and density fluctuations, consistent with the structure generated in turbulent flows9. Our results demonstrate that the structure of the interstellar medium cannot be considered in isolation. Instead, its formation and evolution are controlled by nested, interdependent flows of matter covering many orders of magnitude in spatial scale.
  •  
4.
  • Beswick, R. J., et al. (author)
  • SKA studies of nearby galaxies: Star-formation, accretion processes and molecular gas across all environments
  • 2014
  • In: Proceedings of Science. - 1824-8039.
  • Conference paper (peer-reviewed)abstract
    • The SKA will be a transformational instrument in the study of our local Universe. In particular, by virtue of its high sensitivity (both to point sources and diffuse low surface brightness emission), angular resolution and the frequency ranges covered, the SKA will undertake a very wide range of astrophysical research in the field of nearby galaxies. By surveying vast numbers of nearby galaxies of all types with mJy sensitivity and sub-arcsecond angular resolutions at radio wavelengths, the SKA will provide the cornerstone of our understanding of star-formation and accretion activity in the local Universe. In this chapter we outline the key continuum and molecular line science areas where the SKA, both during phase-1 and when it becomes the full SKA, will have a significant scientific impact.
  •  
5.
  • Coppin, K. E. K., et al. (author)
  • Herschel-PACS observations of [O I]63 μm towards submillimetre galaxies at z~1
  • 2012
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 427:1, s. 520-532
  • Journal article (peer-reviewed)abstract
    • We present Herschel-PACS spectroscopy of the [O I]63 μm far-infrared cooling line from a sample of six unlensed and spectroscopically confirmed 870 μm selected submillimetre (submm) galaxies (SMGs) at 1.1
  •  
6.
  • Grasha, K., et al. (author)
  • The spatial relation between young star clusters and molecular clouds in M51 with LEGUS
  • 2019
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 483:4, s. 4707-4723
  • Journal article (peer-reviewed)abstract
    • We present a study correlating the spatial locations of young star clusters with those of molecular clouds in NGC 5194, in order to investigate the time-scale over which clusters separate from their birth clouds. The star cluster catalogues are from the Legacy ExtraGalactic UV Survey (LEGUS) and the molecular clouds from the Plateau de Bure Interefrometer Arcsecond Whirpool Survey (PAWS). We find that younger star clusters are spatially closer to molecular clouds than older star clusters. The median age for clusters associated with clouds is 4 Myr, whereas it is 50 Myr for clusters that are sufficiently separated from a molecular cloud to be considered unassociated. After similar to 6 Myr, the majority of the star clusters lose association with their molecular gas. Younger star clusters are also preferentially located in stellar spiral arms where they are hierarchically distributed in kpc-size regions for 50-100 Myr before dispersing. The youngest star clusters are more strongly clustered, yielding a two-point correlation function with alpha = -0.28 +/- 0.04, than the giant molecular cloud (GMCs) (alpha = -0.09 +/- 0.03) within the same PAWS field. However, the clustering strength of the most massive GMCs, supposedly the progenitors of the young clusters for a star formation efficiency of a few percent, is comparable (alpha = -0.35 +/- 0.05) to that of the clusters. We find a galactocentric dependence for the coherence of star formation, in which clusters located in the inner region of the galaxy reside in smaller star-forming complexes and display more homogeneous distributions than clusters further from the centre. This result suggests a correlation between the survival of a cluster complex and its environment.
  •  
7.
  • Marchesi, S., et al. (author)
  • THE CHANDRA COSMOS LEGACY SURVEY : OPTICAL/IR IDENTIFICATIONS
  • 2016
  • In: Astrophysical Journal. - 0004-637X. ; 817:1
  • Research review (peer-reviewed)abstract
    • We present the catalog of optical and infrared counterparts of the Chandra COSMOS-Legacy Survey, a 4.6 Ms Chandra program on the 2.2 deg2 of the COSMOS field, combination of 56 new overlapping observations obtained in Cycle 14 with the previous C-COSMOS survey. In this Paper we report the i, K, and 3.6 μm identifications of the 2273 X-ray point sources detected in the new Cycle 14 observations. We use the likelihood ratio technique to derive the association of optical/infrared (IR) counterparts for 97% of the X-ray sources. We also update the information for the 1743 sources detected in C-COSMOS, using new K and 3.6 μm information not available when the C-COSMOS analysis was performed. The final catalog contains 4016 X-ray sources, 97% of which have an optical/IR counterpart and a photometric redshift, while ≃54% of the sources have a spectroscopic redshift. The full catalog, including spectroscopic and photometric redshifts and optical and X-ray properties described here in detail, is available online. We study several X-ray to optical (X/O) properties: with our large statistics we put better constraints on the X/O flux ratio locus, finding a shift toward faint optical magnitudes in both soft and hard X-ray band. We confirm the existence of a correlation between X/O and the the 2-10 keV luminosity for Type 2 sources. We extend to low luminosities the analysis of the correlation between the fraction of obscured AGNs and the hard band luminosity, finding a different behavior between the optically and X-ray classified obscured fraction.
  •  
8.
  • Messa, Matteo, et al. (author)
  • The young star cluster population of M51 with LEGUS - II. Testing environmental dependences
  • 2018
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 477:2, s. 1670-1694
  • Journal article (peer-reviewed)abstract
    • It has recently been established that the properties of young star clusters (YSCs) can vary as a function of the galactic environment in which they are found. We use the cluster catalogue produced by the Legacy ExtragalacticUVSurvey (LEGUS) collaboration to investigate cluster properties in the spiral galaxy M51. We analyse the cluster population as a function of galactocentric distance and in arm and inter-arm regions. The cluster mass function exhibits a similar shape at all radial bins, described by a power law with a slope close to -2 and an exponential truncation around 10(5) M-circle dot. While the mass functions of the YSCs in the spiral arm and inter-arm regions have similar truncation masses, the inter-arm region mass function has a significantly steeper slope than the one in the arm region, a trend that is also observed in the giant molecular cloud mass function and predicted by simulations. The age distribution of clusters is dependent on the region considered, and is consistent with rapid disruption only in dense regions, while little disruption is observed at large galactocentric distances and in the inter-arm region. The fraction of stars forming in clusters does not show radial variations, despite the drop in the H-2 surface density measured as a function of galactocentric distance. We suggest that the higher disruption rate observed in the inner part of the galaxy is likely at the origin of the observed flat cluster formation efficiency radial profile.
  •  
9.
  • Rivera, Gabriela Calistro, et al. (author)
  • Resolving the ISM at the Peak of Cosmic Star Formation with ALMA: The Distribution of CO and Dust Continuum in z ∼2.5 Submillimeter Galaxies
  • 2018
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 863:1
  • Journal article (peer-reviewed)abstract
    • We use Atacama Large Millimeter Array (ALMA) observations of four submillimeter galaxies (SMGs) at z ∼2-3 to investigate the spatially resolved properties of the interstellar medium (ISM) at scales of 1-5 kpc (0.″1-0.″6). The velocity fields of our sources, traced by the12CO(J =3-2) emission, are consistent with disk rotation to the first order, implying average dynamical masses of ∼3 1011within two half-light radii. Through a Bayesian approach we investigate the uncertainties inherent to dynamically constraining total gas masses. We explore the covariance between the stellar mass-to-light ratio and CO-to-H2conversion factor, αCO, finding values of for dark matter fractions of 15%. We show that the resolved spatial distribution of the gas and dust continuum can be uncorrelated to the stellar emission, challenging energy balance assumptions in global SED fitting. Through a stacking analysis of the resolved radial profiles of the CO(3-2), stellar, and dust continuum emission in SMG samples, we find that the cool molecular gas emission in these sources (radii ∼5-14 kpc) is clearly more extended than the rest-frame ∼250 μm dust continuum by a factor >2. We propose that assuming a constant dust-to-gas ratio, this apparent difference in sizes can be explained by temperature and optical depth gradients alone. Our results suggest that caution must be exercised when extrapolating morphological properties of dust continuum observations to conclusions about the molecular gas phase of the interstellar medium (ISM).
  •  
10.
  • Simpson, J. M., et al. (author)
  • AN ALMA SURVEY OF SUBMILLIMETER GALAXIES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH: THE REDSHIFT DISTRIBUTION AND EVOLUTION OF SUBMILLIMETER GALAXIES
  • 2014
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 788:2
  • Journal article (peer-reviewed)abstract
    • We present the first photometric redshift distribution for a large sample of 870 mu m submillimeter galaxies (SMGs) with robust identifications based on observations with ALMA. In our analysis we consider 96 SMGs in the Extended Chandra Deep Field South, 77 of which have 4-19 band photometry. We model the SEDs for these 77 SMGs, deriving a median photometric redshift of z(phot) = 2.3 +/- 0.1. The remaining 19 SMGs have insufficient photometry to derive photometric redshifts, but a stacking analysis of Herschel observations confirms they are not spurious. Assuming that these SMGs have an absolute H-band magnitude distribution comparable to that of a complete sample of z similar to 1-2 SMGs, we demonstrate that they lie at slightly higher redshifts, raising the median redshift for SMGs to zphot = 2.5 +/- 0.2. Critically we show that the proportion of galaxies undergoing an SMG-like phase at z >= 3 is at most 35% +/- 5% of the total population. We derive a median stellar mass of M star = (8 +/- 1) x 10(10) M circle dot, although there are systematic uncertainties of up to 5 x for individual sources. Assuming that the star formation activity in SMGs has a timescale of similar to 100 Myr, we show that their descendants at z similar to 0 would have a space density and MH distribution that are in good agreement with those of local ellipticals. In addition, the inferred mass-weighted ages of the local ellipticals broadly agree with the look-back times of the SMG events. Taken together, these results are consistent with a simple model that identifies SMGs as events that form most of the stars seen in the majority of luminous elliptical galaxies at the present day.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 32

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view