1. |
- Kattge, Jens, et al.
(författare)
-
TRY plant trait database - enhanced coverage and open access
- 2020
-
Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
-
Tidskriftsartikel (refereegranskat)abstract
- Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
|
|
2. |
|
|
3. |
|
|
4. |
- Schleuning, Matthias, et al.
(författare)
-
Specialization of Mutualistic Interaction Networks Decreases toward Tropical Latitudes
- 2012
-
Ingår i: Current Biology. - : Elsevier BV. - 1879-0445 .- 0960-9822. ; 22:20, s. 1925-1931
-
Tidskriftsartikel (refereegranskat)abstract
- Species-rich tropical communities are expected to be more specialized than their temperate counterparts [1-3]. Several studies have reported increasing biotic specialization toward the tropics [4-7], whereas others have not found latitudinal trends once accounting for sampling bias [8, 9] or differences in plant diversity [10, 11]. Thus, the direction of the latitudinal Specialization gradient remains contentious. With an unprecedented global data set, we investigated how biotic specialization between plants and animal pollinators or seed dispersers is associated with latitude, past and contemporary climate, and plant diversity. We show that in contrast to expectation, biotic specialization of mutualistic networks is significantly lower at tropical than at temperate latitudes. Specialization was more closely related to contemporary climate than to past climate stability, suggesting that current conditions have a stronger effect on biotic specialization than historical community stability. Biotic specialization decreased with increasing local and regional plant diversity. This suggests that high specialization of mutualistic interactions is a response of pollinators and seed dispersers to low plant diversity. This could explain why the latitudinal specialization gradient is reversed relative to the latitudinal diversity gradient. Low mutualistic network specialization in the tropics suggests higher tolerance against extinctions in tropical than in temperate communities.
|
|