SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Schofield Peter R.) ;conttype:(scientificother)"

Search: WFRF:(Schofield Peter R.) > Other academic/artistic

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Herrera-Rivero, Marisol, et al. (author)
  • Exploring the genetics of lithium response in bipolar disorders.
  • 2023
  • In: Research square.
  • Other publication (other academic/artistic)abstract
    • Lithium (Li) remains the treatment of choice for bipolar disorders (BP). Its mood-stabilizing effects help reduce the long-term burden of mania, depression and suicide risk in patients with BP. It also has been shown to have beneficial effects on disease-associated conditions, including sleep and cardiovascular disorders. However, the individual responses to Li treatment vary within and between diagnostic subtypes of BP (e.g. BP-I and BP-II) according to the clinical presentation. Moreover, long-term Li treatment has been linked to adverse side-effects that are a cause of concern and non-adherence, including the risk of developing chronic medical conditions such as thyroid and renal disease. In recent years, studies by the Consortium on Lithium Genetics (ConLiGen) have uncovered a number of genetic factors that contribute to the variability in Li treatment response in patients with BP. Here, we leveraged the ConLiGen cohort (N=2,064) to investigate the genetic basis of Li effects in BP. For this, we studied how Li response and linked genes associate with the psychiatric symptoms and polygenic load for medical comorbidities, placing particular emphasis on identifying differences between BP-I and BP-II.We found that clinical response to Li treatment, measured with the Alda scale, was associated with a diminished burden of mania, depression, substance and alcohol abuse, psychosis and suicidal ideation in patients with BP-I and, in patients with BP-II, of depression only. Our genetic analyses showed that a stronger clinical response to Li was modestly related to lower polygenic load for diabetes and hypertension in BP-I but not BP-II. Moreover, our results suggested that a number of genes that have been previously linked to Li response variability in BP differentially relate to the psychiatric symptomatology, particularly to the numbers of manic and depressive episodes, and to the polygenic load for comorbid conditions, including diabetes, hypertension and hypothyroidism.Taken together, our findings suggest that the effects of Li on symptomatology and comorbidity in BP are partially modulated by common genetic factors, with differential effects between BP-I and BP-II.
  •  
3.
  • Perotin-Collard, Jeanne-Marie, et al. (author)
  • Subtypes of eosinophilic asthma with discrete gene pathway phenotypes
  • 2019
  • In: European Respiratory Journal. - : European Respiratory Society Journals. - 0903-1936 .- 1399-3003. ; 54
  • Journal article (other academic/artistic)abstract
    • Background: Blood eosinophil counts ≥0.3x109/L are used to define Type-2, eosinophilic asthma. However, differential responses to T2 biologics of patients with eosinophilic asthma suggests that this may be a heterogeneous phenotype with subsets driven by different molecular mechanisms.Methods: Blood transcriptomic data, acquired from 99 severe asthmatics from the U-BIOPRED study (62% female, mean age 54 yr, 41% on oral steroids), were clustered by topological data analysis and cluster boundaries defined by the MORSE method. Gene pathway signatures were identified by Ingenuity Pathway Analysis.Results: Analysis revealed 3 clusters with different modulated gene pathways, i.e. molecular phenotypes. Subtype 1 had high IFN-γ, low IL5, low IL13 and low IL17 gene expression, with reduced glucocorticoid-induced gene expression. Subtype 2 had low IFNγ, high IL5, high IL13 and low IL17 gene expression. Subtype 3 had low IFNγ, high IL5, high IL13 and high IL17 gene expression. Pathway analysis suggested a strong steroid response in Subtypes 2 and 3. Clinically, the three clusters were not different in respect of age, gender, prevalence of atopy, blood or sputum eosinophil counts. Subtype 3 was characterized by high neutrophil counts in blood and bronchial epithelium, frequent sinus disease and asthma exacerbations, OCS treatment, low allergic sensitisation and low exhaled NO. Subtype 1 was characterized by high exhaled NO and more frequent IgE therapy.Conclusion: This study suggests that eosinophilic severe asthma (≥0.3x109/L) can be stratified further into 3 subtypes with distinct gene expression profiles that could be developed as molecular diagnostic biomarkers to guide treatment and thereby improve patient outcomes.
  •  
4.
  • Schofield, James P. R., et al. (author)
  • Topological data analysis (TDA) of U-BIOPRED paediatric peripheral blood gene expression identified asthma phenotypes characterised by alternative splicing of glucocorticoid receptor (GR) mRNA
  • 2018
  • In: European Respiratory Journal. - : European Respiratory Society. - 0903-1936 .- 1399-3003. ; 52
  • Journal article (other academic/artistic)abstract
    • Background: Molecular stratification of childhood asthma could enable targeted therapy.Aims: Unbiased analysis of gene expression in paediatric severe (SA) and moderate/mild asthma (MA) blood samples to identify sub-phenotypes.Methods: Transcriptomic profiling by microarray analysis of blood from the U-BIOPRED paediatric cohort (Fleming ERJ 2015), pre- and school-age children, (SApre, n=62; MApre, n=42; SAsc, n=75 and MAsc, n=37). Topological data analysis (TDA) was used for unbiased clustering.Results: Sub-phenotypes, P1, P2, P3 and P4 were identified and are highlighted in the TDA network in the figure and a heatmap of selected variables. P1 (38% of the cohort, median 11 yrs) was characterised by low expression of glucocorticoid receptor (GR) mRNA splice variant with a long 3’ UTR (q = 2.43E-17), but no significant difference in the expression of glucocorticoid receptor (GR) mRNA splice variant with a short 3’ UTR. In P1, COX2 expression was up (q = 1.89E-06) and IFN-γ was down (q = 5.61E-06), characteristics of a decreased steroid response.Conclusion: Unbiased analysis of U-BIOPRED paediatric peripheral blood gene expression identified a sub-phenotype, P1, with an inhibited steroid response. P1 is associated with low expression of a splice variant of GR with a long 3’ UTR.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view