1. |
|
|
2. |
|
|
3. |
- Eremeev, S. V., et al.
(författare)
-
Insight into the electronic structure of the centrosymmetric skyrmion magnet GdRu 2 Si 2
- 2023
-
Ingår i: Nanoscale Advances. - 2516-0230. ; 5:23, s. 6678-6687
-
Tidskriftsartikel (refereegranskat)abstract
- The discovery of a square magnetic-skyrmion lattice in GdRu2Si2, with the smallest so far found skyrmion size and without a geometrically frustrated lattice, has attracted significant attention. In this work, we present a comprehensive study of surface and bulk electronic structures of GdRu2Si2 by utilizing momentum-resolved photoemission (ARPES) measurements and first-principles calculations. We show how the electronic structure evolves during the antiferromagnetic transition when a peculiar helical order of 4f magnetic moments within the Gd layers sets in. A nice agreement of the ARPES-derived electronic structure with the calculated one has allowed us to characterize the features of the Fermi surface (FS), unveil the nested region along kz at the corner of the 3D FS, and reveal their orbital compositions. Our findings suggest that the Ruderman-Kittel-Kasuya-Yosida interaction plays a decisive role in stabilizing the spiral-like order of Gd 4f moments responsible for the skyrmion physics in GdRu2Si2. Our results provide a deeper understanding of electronic and magnetic properties of this material, which is crucial for predicting and developing novel skyrmion-based systems.
|
|
4. |
- Generalov, Alexander, et al.
(författare)
-
Spin Orientation of Two-Dimensional Electrons Driven by Temperature-Tunable Competition of Spin-Orbit and Exchange-Magnetic Interactions
- 2017
-
Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 17:2, s. 811-820
-
Tidskriftsartikel (refereegranskat)abstract
- Finding ways to create and control the spin-dependent properties of two-dimensional electron states (2DESs) is a major challenge for the elaboration of novel spin-based devices. Spin-orbit and exchange-magnetic interactions (SOI and EMI) are two fundamental mechanisms that enable access to the tunability of spin-dependent properties of carriers. The silicon surface of HoRh2Si2 appears to be a unique model system, where concurrent SOI and EMI can be visualized and controlled by varying the temperature. The beauty and simplicity of this system lie in the 4f moments, which act as a multiple tuning instrument on the 2DESs, as the 4f projections parallel and perpendicular to the surface order at essentially different temperatures. Here we show that the SOI locks the spins of the 2DESs exclusively in the surface plane when the 4f moments are disordered: the Rashba-Bychkov effect. When the temperature is gradually lowered and the system experiences magnetic order, the rising EMI progressively competes with the SOI leading to a fundamental change in the spin-dependent properties of the 2DESs. The spins rotate and reorient toward the out-of-plane Ho 4f moments. Our findings show that the direction of the spins and the spin-splitting of the two-dimensional electrons at the surface can be manipulated in a controlled way by using only one parameter: the temperature.
|
|
5. |
- Kalman, Janos L, et al.
(författare)
-
Investigating polygenic burden in age at disease onset in bipolar disorder: Findings from an international multicentric study.
- 2019
-
Ingår i: Bipolar disorders. - : Wiley. - 1399-5618 .- 1398-5647. ; 21:1, s. 68-75
-
Tidskriftsartikel (refereegranskat)abstract
- Bipolar disorder (BD) with early disease onset is associated with an unfavorable clinical outcome and constitutes a clinically and biologically homogenous subgroup within the heterogeneous BD spectrum. Previous studies have found an accumulation of early age at onset (AAO) in BD families and have therefore hypothesized that there is a larger genetic contribution to the early-onset cases than to late onset BD. To investigate the genetic background of this subphenotype, we evaluated whether an increased polygenic burden of BD- and schizophrenia (SCZ)-associated risk variants is associated with an earlier AAO in BD patients.A total of 1995 BD type 1 patients from the Consortium of Lithium Genetics (ConLiGen), PsyCourse and Bonn-Mannheim samples were genotyped and their BD and SCZ polygenic risk scores (PRSs) were calculated using the summary statistics of the Psychiatric Genomics Consortium as a training data set. AAO was either separated into onset groups of clinical interest (childhood and adolescence [≤18years] vs adulthood [>18years]) or considered as a continuous measure. The associations between BD- and SCZ-PRSs and AAO were evaluated with regression models.BD- and SCZ-PRSs were not significantly associated with age at disease onset. Results remained the same when analyses were stratified by site of recruitment.The current study is the largest conducted so far to investigate the association between the cumulative BD and SCZ polygenic risk and AAO in BD patients. The reported negative results suggest that such a polygenic influence, if there is any, is not large, and highlight the importance of conducting further, larger scale studies to obtain more information on the genetic architecture of this clinically relevant phenotype.
|
|
6. |
- Laj, Paolo, et al.
(författare)
-
A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories
- 2020
-
Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 13:8, s. 4353-4392
-
Tidskriftsartikel (refereegranskat)abstract
- Aerosol particles are essential constituents of the Earth's atmosphere, impacting the earth radiation balance directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei. In contrast to most greenhouse gases, aerosol particles have short atmospheric residence times, resulting in a highly heterogeneous distribution in space and time. There is a clear need to document this variability at regional scale through observations involving, in particular, the in situ near-surface segment of the atmospheric observation system. This paper will provide the widest effort so far to document variability of climate-relevant in situ aerosol properties (namely wavelength dependent particle light scattering and absorption coefficients, particle number concentration and particle number size distribution) from all sites connected to the Global Atmosphere Watch network. High-quality data from almost 90 stations worldwide have been collected and controlled for quality and are reported for a reference year in 2017, providing a very extended and robust view of the variability of these variables worldwide. The range of variability observed worldwide for light scattering and absorption coefficients, single-scattering albedo, and particle number concentration are presented together with preliminary information on their long-term trends and comparison with model simulation for the different stations. The scope of the present paper is also to provide the necessary suite of information, including data provision procedures, quality control and analysis, data policy, and usage of the ground-based aerosol measurement network. It delivers to users of the World Data Centre on Aerosol, the required confidence in data products in the form of a fully characterized value chain, including uncertainty estimation and requirements for contributing to the global climate monitoring system.
|
|
7. |
- Mende, Max, et al.
(författare)
-
Strong Rashba Effect and Different f−d Hybridization Phenomena at the Surface of the Heavy-Fermion Superconductor CeIrIn 5
- 2022
-
Ingår i: Advanced Electronic Materials. - : Wiley. - 2199-160X .- 2199-160X. ; 8:3
-
Tidskriftsartikel (refereegranskat)abstract
- New temperature scales and remarkable differences from bulk properties have increasingly placed the surfaces of strongly correlated f materials into the focus of research activities. Applying first-principles calculations and angle-resolved photoelectron spectroscopy measurements, a strong Rashba effect and spin-split surface states at the CeIn surface of the heavy-fermion superconductor CeIrIn5 are revealed. The unveiled 4f-derived electron landscape is remarkably distinct for surface and bulk Ce implying the existence of novel temperature scales near the surface region in this material. These results show that ab initio calculations can reliably predict the unusual electronic and spin structure of surfaces of strongly correlated 4f systems where Rashba spin-orbit-coupling phenomena emerge. It is suggested that the structural blocks of such materials can be combined with magnetically active layers for engineering of novel nanostructural objects with appropriate substrates where the diversity of f-driven properties can be applied for the development of novel functionalities.
|
|
8. |
- Mende, Max, et al.
(författare)
-
Strong Rashba Effect and Different f−d Hybridization Phenomena at the Surface of the Heavy-Fermion Superconductor CeIrIn5
- 2022
-
Ingår i: Advanced Electronic Materials. - : Wiley. - 2199-160X. ; 8:3
-
Tidskriftsartikel (refereegranskat)abstract
- New temperature scales and remarkable differences from bulk properties have increasingly placed the surfaces of strongly correlated f materials into the focus of research activities. Applying first-principles calculations and angle-resolved photoelectron spectroscopy measurements, a strong Rashba effect and spin-split surface states at the CeIn surface of the heavy-fermion superconductor CeIrIn5 are revealed. The unveiled 4f-derived electron landscape is remarkably distinct for surface and bulk Ce implying the existence of novel temperature scales near the surface region in this material. These results show that ab initio calculations can reliably predict the unusual electronic and spin structure of surfaces of strongly correlated 4f systems where Rashba spin-orbit-coupling phenomena emerge. It is suggested that the structural blocks of such materials can be combined with magnetically active layers for engineering of novel nanostructural objects with appropriate substrates where the diversity of f-driven properties can be applied for the development of novel functionalities.
|
|
9. |
- Ozsahin, Hulya, et al.
(författare)
-
Long-term outcome following hematopoietic stem-cell transplantation in Wiskott-Aldrich syndrome: collaborative study of the European Society for Immunodeficiencies and European Group for Blood and Marrow Transplantation.
- 2008
-
Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 111:1, s. 439-45
-
Tidskriftsartikel (refereegranskat)abstract
- Wiskott-Aldrich syndrome (WAS) is a rare X-linked immunodeficiency with microthrombocytopenia, eczema, recurrent infections, autoimmune disorders, and malignancies that are life-threatening in the majority of patients. In this long-term, retrospective, multicenter study, we analyzed events that occurred in 96 WAS patients who received transplants between 1979 and 2001 who survived at least 2 years following hematopoietic stem-cell transplantation (HSCT). Events included chronic graft-versus-host disease (cGVHD), autoimmunity, infections, and sequelae of before or after HSCT complications. Three patients (3%) died 2.1 to 21 years following HSCT. Overall 7-year event-free survival rate was 75%. It was lower in recipients of mismatched related donors, also in relation with an older age at HSCT and disease severity. The most striking finding was the observation of cGVHD-independent autoimmunity in 20% of patients strongly associated with a mixed/split chimerism status (P < .001), suggesting that residual-host lymphocytes can mediate autoimmune disease despite the coexistence of donor lymphocytes. Infectious complications (6%) related to splenectomy were also significant and may warrant a more restrictive approach to performing splenectomy in WAS patients. Overall, this study provides the basis for a prospective, standardized, and more in-depth detailed analysis of chimerism and events in long-term follow-up of WAS patients who receive transplants to design better-adapted therapeutic strategies.
|
|
10. |
- Poelchen, Georg, et al.
(författare)
-
Interlayer Coupling of a Two-Dimensional Kondo Lattice with a Ferromagnetic Surface in the Antiferromagnet CeCo2P2
- 2022
-
Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 16:3, s. 3573-3581
-
Tidskriftsartikel (refereegranskat)abstract
- The f-driven temperature scales at the surfaces of strongly correlated materials have increasingly come into the focus of research efforts. Here, we unveil the emergence of a two-dimensional Ce Kondo lattice, which couples ferromagnetically to the ordered Co lattice below the P-terminated surface of the antiferromagnet CeCo2P2. In its bulk, Ce is passive and behaves tetravalently. However, because of symmetry breaking and an effective magnetic field caused by an uncompensated ferromagnetic Co layer, the Ce 4f states become partially occupied and spin-polarized near the surface. The momentum-resolved photoemission measurements indicate a strong admixture of the Ce 4f states to the itinerant bands near the Fermi level including surface states that are split by exchange interaction with Co. The temperature-dependent measurements reveal strong changes of the 4f intensity at the Fermi level in accordance with the Kondo scenario. Our findings show how rich and diverse the f-driven properties can be at the surface of materials without f-physics in the bulk.
|
|