SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Selnes Per) "

Sökning: WFRF:(Selnes Per)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aspli, Klaus Thanke, et al. (författare)
  • CSF, Blood, and MRI Biomarkers in Skogholt’s Disease - A Rare Neurodegenerative Disease in a Norwegian Kindred
  • 2023
  • Ingår i: Brain Sciences. - 2076-3425. ; 13:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Skogholt’s disease is a rare neurological disorder that is only observed in a small Norwegian kindred. It typically manifests in adulthood with uncharacteristic neurological symptoms from both the peripheral and central nervous systems. The etiology of the observed cerebral white matter lesions and peripheral myelin pathology is unclear. Increased cerebrospinal fluid (CSF) concentrations of protein have been confirmed, and recently, very high concentrations of CSF total and phosphorylated tau have been detected in Skogholt patients. The symptoms and observed biomarker changes in Skogholt’s disease are largely nonspecific, and further studies are necessary to elucidate the disease mechanisms. Here, we report the results of neurochemical analyses of plasma and CSF, as well as results from the morphometric segmentation of cerebral magnetic resonance imaging. We analyzed the biomarkers Aβ1––42, Aβ1–40, Aβx–38, Aβx–40, Aβx–42, total and phosphorylated tau, glial fibrillary acidic protein, neurofilament light chain, platelet-derived growth factor receptor beta, and beta-trace protein. All analyzed CSF biomarkers, except neurofilament light chain and Aβ1/x–42, were increased several-fold. In blood, none of these biomarkers were significantly different between the Skogholt and control groups. MRI volumetric segmentation revealed decreases in the ventricular, white matter, and choroid plexus volumes in the Skogholt group, with an accompanying increase in white matter lesions. The cortical thickness and subcortical gray matter volumes were increased in the Skogholt group. Pathophysiological changes resulting from choroidal dysfunction and/or abnormal CSF turnover, which may cause the increases in CSF protein and brain biomarker levels, are discussed.
  •  
2.
  • Gonzalez-Ortiz, Fernando, et al. (författare)
  • Plasma brain-derived tau is an amyloid-associated neurodegeneration biomarker in Alzheimer's disease.
  • 2024
  • Ingår i: Nature communications. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Staging amyloid-beta (Aβ) pathophysiology according to the intensity of neurodegeneration could identify individuals at risk for cognitive decline in Alzheimer's disease (AD). In blood, phosphorylated tau (p-tau) associates with Aβ pathophysiology but an AD-type neurodegeneration biomarker has been lacking. In this multicenter study (n = 1076), we show that brain-derived tau (BD-tau) in blood increases according to concomitant Aβ ("A") and neurodegeneration ("N") abnormalities (determined using cerebrospinal fluid biomarkers); We used blood-based A/N biomarkers to profile the participants in this study; individuals with blood-based p-tau+/BD-tau+ profiles had the fastest cognitive decline and atrophy rates, irrespective of the baseline cognitive status. Furthermore, BD-tau showed no or much weaker correlations with age, renal function, other comorbidities/risk factors and self-identified race/ethnicity, compared with other blood biomarkers. Here we show that blood-based BD-tau is a biomarker for identifying Aβ-positive individuals at risk of short-term cognitive decline and atrophy, with implications for clinical trials and implementation of anti-Aβ therapies.
  •  
3.
  • Hagberg, Guri, et al. (författare)
  • No evidence for amyloid pathology as a key mediator of neurodegeneration post-stroke : a seven-year follow-up study
  • 2020
  • Ingår i: BMC Neurology. - : BioMed Central. - 1471-2377. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Cognitive impairment (CI) with mixed vascular and neurodegenerative pathologies after stroke is common. The role of amyloid pathology in post-stroke CI is unclear. We hypothesize that amyloid deposition, measured with Flutemetamol (F-18-Flut) positron emission tomography (PET), is common in seven-year stroke survivors diagnosed with CI and, further, that quantitatively assessed F-18-Flut-PET uptake after 7 years correlates with amyloid-beta peptide (A beta(42)) levels in cerebrospinal fluid (CSF) at 1 year, and with measures of neurodegeneration and cognition at 7 years post-stroke.Methods: 208 patients with first-ever stroke or transient Ischemic Attack (TIA) without pre-existing CI were included during 2007 and 2008. At one- and seven-years post-stroke, cognitive status was assessed, and categorized into dementia, mild cognitive impairment or normal. Etiologic sub-classification was based on magnetic resonance imaging (MRI) findings, CSF biomarkers and clinical cognitive profile. At 7 years, patients were offered F-18-Flut-PET, and amyloid-positivity was assessed visually and semi-quantitatively. The associations between F-18-Flut-PET standardized uptake value ratios (SUVr) and measures of neurodegeneration (medial temporal lobe atrophy (MTLA), global cortical atrophy (GCA)) and cognition (Mini-Mental State Exam (MMSE), Trail-making test A (TMT-A)) and CSF A beta(42) levels were assessed using linear regression.Results: In total, 111 patients completed 7-year follow-up, and 26 patients agreed to PET imaging, of whom 13 had CSF biomarkers from 1 year. Thirteen out of 26 patients were diagnosed with CI 7 years post-stroke, but only one had visually assessed amyloid positivity. CSF A beta(42) levels at 1 year, MTA grade, GCA scale, MMSE score or TMT-A at 7 years did not correlate with F-18-Flut-PET SUVr in this cohort.Conclusions: Amyloid binding was not common in 7-year stroke survivors diagnosed with CI. Quantitatively assessed, cortical amyloid deposition did not correlate with other measures related to neurodegeneration or cognition. Therefore, amyloid pathology may not be a key mediator of neurodegeneration 7 years post-stroke.Trial registration: Clinicaltrials.gov(NCT00506818). July 23, 2007. Inclusion from February 2007, randomization and intervention from May 2007 and trial registration in July 2007.
  •  
4.
  • Jansen, Iris E, et al. (författare)
  • Genome-wide meta-analysis for Alzheimer's disease cerebrospinal fluid biomarkers.
  • 2022
  • Ingår i: Acta neuropathologica. - : Springer Science and Business Media LLC. - 1432-0533 .- 0001-6322. ; 144:5, s. 821-842
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid-beta 42 (Aβ42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n = 8074; replication n = 5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for Aβ42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple Aβ42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume.
  •  
5.
  • Jansen, Willemijn J, et al. (författare)
  • Prevalence Estimates of Amyloid Abnormality Across the Alzheimer Disease Clinical Spectrum.
  • 2022
  • Ingår i: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 79:3, s. 228-243
  • Tidskriftsartikel (refereegranskat)abstract
    • One characteristic histopathological event in Alzheimer disease (AD) is cerebral amyloid aggregation, which can be detected by biomarkers in cerebrospinal fluid (CSF) and on positron emission tomography (PET) scans. Prevalence estimates of amyloid pathology are important for health care planning and clinical trial design.To estimate the prevalence of amyloid abnormality in persons with normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia and to examine the potential implications of cutoff methods, biomarker modality (CSF or PET), age, sex, APOE genotype, educational level, geographical region, and dementia severity for these estimates.This cross-sectional, individual-participant pooled study included participants from 85 Amyloid Biomarker Study cohorts. Data collection was performed from January 1, 2013, to December 31, 2020. Participants had normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia. Normal cognition and subjective cognitive decline were defined by normal scores on cognitive tests, with the presence of cognitive complaints defining subjective cognitive decline. Mild cognitive impairment and clinical AD dementia were diagnosed according to published criteria.Alzheimer disease biomarkers detected on PET or in CSF.Amyloid measurements were dichotomized as normal or abnormal using cohort-provided cutoffs for CSF or PET or by visual reading for PET. Adjusted data-driven cutoffs for abnormal amyloid were calculated using gaussian mixture modeling. Prevalence of amyloid abnormality was estimated according to age, sex, cognitive status, biomarker modality, APOE carrier status, educational level, geographical location, and dementia severity using generalized estimating equations.Among the 19 097 participants (mean [SD] age, 69.1 [9.8] years; 10 148 women [53.1%]) included, 10 139 (53.1%) underwent an amyloid PET scan and 8958 (46.9%) had an amyloid CSF measurement. Using cohort-provided cutoffs, amyloid abnormality prevalences were similar to 2015 estimates for individuals without dementia and were similar across PET- and CSF-based estimates (24%; 95% CI, 21%-28%) in participants with normal cognition, 27% (95% CI, 21%-33%) in participants with subjective cognitive decline, and 51% (95% CI, 46%-56%) in participants with mild cognitive impairment, whereas for clinical AD dementia the estimates were higher for PET than CSF (87% vs 79%; mean difference, 8%; 95% CI, 0%-16%; P = .04). Gaussian mixture modeling-based cutoffs for amyloid measures on PET scans were similar to cohort-provided cutoffs and were not adjusted. Adjusted CSF cutoffs resulted in a 10% higher amyloid abnormality prevalence than PET-based estimates in persons with normal cognition (mean difference, 9%; 95% CI, 3%-15%; P = .004), subjective cognitive decline (9%; 95% CI, 3%-15%; P = .005), and mild cognitive impairment (10%; 95% CI, 3%-17%; P = .004), whereas the estimates were comparable in persons with clinical AD dementia (mean difference, 4%; 95% CI, -2% to 9%; P = .18).This study found that CSF-based estimates using adjusted data-driven cutoffs were up to 10% higher than PET-based estimates in people without dementia, whereas the results were similar among people with dementia. This finding suggests that preclinical and prodromal AD may be more prevalent than previously estimated, which has important implications for clinical trial recruitment strategies and health care planning policies.
  •  
6.
  • MacIntosh, Bradley J., et al. (författare)
  • Radiological features of brain hemorrhage through automated segmentation from computed tomography in stroke and traumatic brain injury
  • 2023
  • Ingår i: Frontiers in Neurology. - 1664-2295. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Radiological assessment is necessary to diagnose spontaneous intracerebral hemorrhage (ICH) and traumatic brain injury intracranial hemorrhage (TBI-bleed). Artificial intelligence (AI) deep learning tools provide a means for decision support. This study evaluates the hemorrhage segmentations produced from three-dimensional deep learning AI model that was developed using non-contrast computed tomography (CT) imaging data external to the current study. Methods: Non-contrast CT imaging data from 1263 patients were accessed across seven data sources (referred to as sites) in Norway and Sweden. Patients were included based on ICH, TBI-bleed, or mild TBI diagnosis. Initial non-contrast CT images were available for all participants. Hemorrhage location frequency maps were generated. The number of estimated haematoma clusters was correlated with the total haematoma volume. Ground truth expert annotations were available for one ICH site; hence, a comparison was made with the estimated haematoma volumes. Segmentation volume estimates were used in a receiver operator characteristics (ROC) analysis for all samples (i.e., bleed detected) and then specifically for one site with few TBI-bleed cases. Results: The hemorrhage frequency maps showed spatial patterns of estimated lesions consistent with ICH or TBI-bleed presentations. There was a positive correlation between the estimated number of clusters and total haematoma volume for each site (correlation range: 0.45–0.74; each p-value < 0.01) and evidence of ICH between-site differences. Relative to hand-drawn annotations for one ICH site, the VIOLA-AI segmentation mask achieved a median Dice Similarity Coefficient of 0.82 (interquartile range: 0.78 and 0.83), resulting in a small overestimate in the haematoma volume by a median of 0.47 mL (interquartile range: 0.04 and 1.75 mL). The bleed detection ROC analysis for the whole sample gave a high area-under-the-curve (AUC) of 0.92 (with sensitivity and specificity of 83.28% and 95.41%); however, when considering only the mild head injury site, the TBI-bleed detection gave an AUC of 0.70. Discussion: An open-source segmentation tool was used to visualize hemorrhage locations across multiple data sources and revealed quantitative hemorrhage site differences. The automated total hemorrhage volume estimate correlated with a per-participant hemorrhage cluster count. ROC results were moderate-to-high. The VIOLA-AI tool had promising results and might be useful for various types of intracranial hemorrhage.
  •  
7.
  • Nordengen, Kaja, et al. (författare)
  • Longitudinal cerebrospinal fluid measurements show glial hypo- and hyperactivation in predementia Alzheimer's disease.
  • 2023
  • Ingår i: Journal of neuroinflammation. - 1742-2094. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain innate immune activation is associated with Alzheimer's disease (AD), but degrees of activation may vary between disease stages. Thus, brain innate immune activation must be assessed in longitudinal clinical studies that include biomarker negative healthy controls and cases with established AD pathology. Here, we employ longitudinally sampled cerebrospinal fluid (CSF) core AD, immune activation and glial biomarkers to investigate early (predementia stage) innate immune activation levels and biomarker profiles.We included non-demented cases from a longitudinal observational cohort study, with CSF samples available at baseline (n = 535) and follow-up (n = 213), between 1 and 6 years from baseline (mean 2.8 years). We measured Aβ42/40 ratio, p-tau181, and total-tau to determine Ab (A+), tau-tangle pathology (T+), and neurodegeneration (N+), respectively. We classified individuals into these groups: A-/T-/N-, A+/T-/N-, A+/T+ or N+, or A-/T+ or N+. Using linear and mixed linear regression, we compared levels of CSF sTREM2, YKL-40, clusterin, fractalkine, MCP-1, IL-6, IL-1, IL-18, and IFN-γ both cross-sectionally and longitudinally between groups. A post hoc analysis was also performed to assess biomarker differences between cognitively healthy and impaired individuals in the A+/T+ or N+ group.Cross-sectionally, CSF sTREM2, YKL-40, clusterin and fractalkine were higher only in groups with tau pathology, independent of amyloidosis (p < 0.001, A+/T+ or N+ and A-/T+ or N+, compared to A-/T-/N-). No significant group differences were observed for the cytokines CSF MCP-1, IL-6, IL-10, IL18 or IFN-γ. Longitudinally, CSF YKL-40, fractalkine and IFN-γ were all significantly lower in stable A+/T-/N- cases (all p < 0.05). CSF sTREM2, YKL-40, clusterin, fractalkine (p < 0.001) and MCP-1 (p < 0.05) were all higher in T or N+, with or without amyloidosis at baseline, but remained stable over time. High CSF sTREM2 was associated with preserved cognitive function within the A+/T+ or N+ group, relative to the cognitively impaired with the same A/T/N biomarker profile (p < 0.01).Immune hypoactivation and reduced neuron-microglia communication are observed in isolated amyloidosis while activation and increased fractalkine accompanies tau pathology in predementia AD. Glial hypo- and hyperactivation through the predementia AD continuum suggests altered glial interaction with Ab and tau pathology, and may necessitate differential treatments, depending on the stage and patient-specific activation patterns.
  •  
8.
  • Selnes, Per, et al. (författare)
  • Effects of cerebrovascular disease on amyloid precursor protein metabolites in cerebrospinal fluid
  • 2010
  • Ingår i: Fluids and Barriers of the CNS. - : Springer Science and Business Media LLC. - 2045-8118. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract Background Alzheimer's disease (AD) and cerebrovascular disease (CVD) including chronic small vessel disease of the brain (SVD) are the most frequent causes of dementia. AD is associated with metabolism of amyloid precursor protein (APP) and low levels of amyloid-β peptide (Aβ) X-42 in the cerebrospinal fluid (CSF). CVD and SVD are established risk factors for AD, brain white matter lesions (WML) are established surrogate markers for SVD and are also associated with reduced CSF AβX-42. A cohort survey was performed to examine whether SVD or acute CVD affects APP metabolism and to explore a potential association between WML and APP metabolism in two groups; cognitively impaired patients, subjective and mild (SCI and MCI) and stroke patients. Through measurements of CSF APP metabolite levels in patients with a wide range of WML volumes, this study aimed to determine how SVD influences APP metabolism. Methods Sixty-three patients were included: 37 with subjective cognitive impairment (SCI) or mild cognitive impairment (MCI) without stroke, and 26 after acute stroke. Chronic and acute WML volume and infarct volume were determined by magnetic resonance imaging (MRI) post-scan processing, and CSF levels of α- and β-cleaved soluble APP (sAPP-α and sAPP-β, AβX-38, AβX-40 and AβX-42) were determined. The Mann-Whitney test was used to compare the patient groups. Chronic and acute WML volumes, infarct volume, age, and sex were used as predictors for CSF biomarker levels in linear regression analysis. Results CSF levels of sAPP-α and sAPP-β were strongly correlated (r = 0.95, p < 0.001) and lower levels of these biomarkers were found in the stroke group than in the SCI/MCI group; median sAPP-α 499.5 vs. 698.0 ng/mL (p < 0.001), sAPP-β 258.0 vs. 329.0 ng/mL (p < 0.005). CSF levels of sAPP-α, sAPP-β, AβX-38, AβX-40 and AβX-42 were inversely correlated with chronic WML volume (p ≤ 0.005; p ≤ 0.01; p ≤ 0.01; p ≤ 0.05; p ≤ 0.05 respectively), but not with acute WML or infarct volumes. Conclusions Lower CSF levels of sAPP-α and sAPP-β in the stroke group than in the SCI/MCI group and an inverse correlation with chronic WML indicate that ischemia lowers the levels of CSF sAPP metabolites and suggests that APP axonal transport or metabolism may be affected in SVD of the brain.
  •  
9.
  • Selnes, Per, et al. (författare)
  • Impaired synaptic function is linked to cognition in Parkinson's disease.
  • 2017
  • Ingår i: Annals of clinical and translational neurology. - : Wiley. - 2328-9503. ; 4:10, s. 700-713
  • Tidskriftsartikel (refereegranskat)abstract
    • Cognitive impairment is frequent in Parkinson's disease, but the underlying mechanisms are insufficiently understood. Because cortical metabolism is reduced in Parkinson's disease and closely associated with cognitive impairment, and CSF amyloid-β species are reduced and correlate with neuropsychological performance in Parkinson's disease, and amyloid-β release to interstitial fluid may be related to synaptic activity; we hypothesize that synapse dysfunction links cortical hypometabolism, reduced CSF amyloid-β, and presynaptic deposits of α-synuclein. We expect a correlation between hypometabolism, CSF amyloid-β, and the synapse related-markers CSF neurogranin and α-synuclein.Thirty patients with mild-to-moderate Parkinson's disease and 26 healthy controls underwent a clinical assessment, lumbar puncture, MRI, 18F-fludeoxyglucose-PET, and a neuropsychological test battery (repeated for the patients after 2 years).All subjects had CSF amyloid-β 1-42 within normal range. In Parkinson's disease, we found strong significant correlations between cortical glucose metabolism, CSF Aβ, α-synuclein, and neurogranin. All PET CSF biomarker-based cortical clusters correlated strongly with cognitive parameters. CSF neurogranin levels were significantly lower in mild-to-moderate Parkinson's disease compared to controls, correlated with amyloid-β and α-synuclein, and with motor stage. There was little change in cognition after 2 years, but the cognitive tests that were significantly different, were also significantly associated with cortical metabolism. No such correlations were found in the control group.CSF Aβ, α-synuclein, and neurogranin concentrations are related to cortical metabolism and cognitive decline. Synaptic dysfunction due to Aβ and α-synuclein dysmetabolism may be central in the evolution of cognitive impairment in Parkinson's disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy