SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shapiro Beth) ;lar1:(uu)"

Sökning: WFRF:(Shapiro Beth) > Uppsala universitet

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blaxter, Mark, et al. (författare)
  • Why sequence all eukaryotes?
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 0027-8424 .- 1091-6490. ; 119:4
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Life on Earth has evolved from initial simplicity to the astounding complexity we experience today. Bacteria and archaea have largely excelled in metabolic diversification, but eukaryotes additionally display abundant morphological innovation. How have these innovations come about and what constraints are there on the origins of novelty and the continuing maintenance of biodiversity on Earth? The history of life and the code for the working parts of cells and systems are written in the genome. The Earth BioGenome Project has proposed that the genomes of all extant, named eukaryotes-about 2 million species-should be sequenced to high quality to produce a digital library of life on Earth, beginning with strategic phylogenetic, ecological, and high-impact priorities. Here we discuss why we should sequence all eukaryotic species, not just a representative few scattered across the many branches of the tree of life. We suggest that many questions of evolutionary and ecological significance will only be addressable when whole-genome data representing divergences at all of the branchings in the tree of life or all species in natural ecosystems are available. We envisage that a genomic tree of life will foster understanding of the ongoing processes of speciation, adaptation, and organismal dependencies within entire ecosystems. These explorations will resolve long-standing problems in phylogenetics, evolution, ecology, conservation, agriculture, bioindustry, and medicine.
  •  
2.
  • Campos, Paula F, et al. (författare)
  • Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (Ovibos moschatus) population dynamics
  • 2010
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 107:12, s. 5675-5680
  • Tidskriftsartikel (refereegranskat)abstract
    • The causes of the late Pleistocene megafaunal extinctions are poorly understood. Different lines of evidence point to climate change, the arrival of humans, or a combination of these events as the trigger. Although many species went extinct, others, such as caribou and bison, survived to the present. The musk ox has an intermediate story: relatively abundant during the Pleistocene, it is now restricted to Greenland and the Arctic Archipelago. In this study, we use ancient DNA sequences, temporally unbiased summary statistics, and Bayesian analytical techniques to infer musk ox population dynamics throughout the late Pleistocene and Holocene. Our results reveal that musk ox genetic diversity was much higher during the Pleistocene than at present, and has undergone several expansions and contractions over the past 60,000 years. Northeast Siberia was of key importance, as it was the geographic origin of all samples studied and held a large diverse population until local extinction at approximately 45,000 radiocarbon years before present ((14)C YBP). Subsequently, musk ox genetic diversity reincreased at ca. 30,000 (14)C YBP, recontracted at ca. 18,000 (14)C YBP, and finally recovered in the middle Holocene. The arrival of humans into relevant areas of the musk ox range did not affect their mitochondrial diversity, and both musk ox and humans expanded into Greenland concomitantly. Thus, their population dynamics are better explained by a nonanthropogenic cause (for example, environmental change), a hypothesis supported by historic observations on the sensitivity of the species to both climatic warming and fluctuations.
  •  
3.
  • Christmas, Matthew, et al. (författare)
  • Evolutionary constraint and innovation across hundreds of placental mammals
  • 2023
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 380:6643
  • Tidskriftsartikel (refereegranskat)abstract
    • Zoonomia is the largest comparative genomics resource for mammals produced to date. By aligning genomes for 240 species, we identify bases that, when mutated, are likely to affect fitness and alter disease risk. At least 332 million bases (similar to 10.7%) in the human genome are unusually conserved across species (evolutionarily constrained) relative to neutrally evolving repeats, and 4552 ultraconserved elements are nearly perfectly conserved. Of 101 million significantly constrained single bases, 80% are outside protein-coding exons and half have no functional annotations in the Encyclopedia of DNA Elements (ENCODE) resource. Changes in genes and regulatory elements are associated with exceptional mammalian traits, such as hibernation, that could inform therapeutic development. Earth's vast and imperiled biodiversity offers distinctive power for identifying genetic variants that affect genome function and organismal phenotypes.
  •  
4.
  • Dalen, Love, et al. (författare)
  • Partial Genetic Turnover in Neandertals : Continuity in the East and Population Replacement in the West
  • 2012
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 29:8, s. 1893-1897
  • Tidskriftsartikel (refereegranskat)abstract
    • Remarkably little is known about the population-level processes leading up to the extinction of the neandertal. To examine this, we use mitochondrial DNA sequences from 13 neandertal individuals, including a novel sequence from northern Spain, to examine neandertal demographic history. Our analyses indicate that recent western European neandertals (< 48 kyr) constitute a tightly defined group with low mitochondrial genetic variation in comparison with both eastern and older (> 48 kyr) European neandertals. Using control region sequences, Bayesian demographic simulations provide higher support for a model of population fragmentation followed by separate demographic trajectories in subpopulations over a null model of a single stable population. The most parsimonious explanation for these results is that of a population turnover in western Europe during early Marine Isotope Stage 3, predating the arrival of anatomically modern humans in the region.
  •  
5.
  • Dalén, Love, et al. (författare)
  • Recovery of DNA from Footprints in the Snow
  • 2007
  • Ingår i: Canadian field-naturalist. - 0008-3550. ; 121:3, s. 321-324
  • Tidskriftsartikel (refereegranskat)abstract
    • The recovery of trace amounts of DNA has been demonstrated to be a reliable tool in conservation genetics and has become a key component of modern forensic casework. To date, genetic data have been successfully recovered from a variety of sources, including biological fluids, faeces, clothing, and even directly from fingerprints. However, to our knowledge and despite their widespread occurrence and clear potential as a source of DNA, genetic information has not previously been recovered directly from footprints. Here, we extract and amplify mitochondrial DNA from a snow footprint, <48-hours old, made by a Swedish Arctic Fox (Alopex lagopus). Our results demonstrate that it is possible to recover Sufficient DNA from recent footprints to accurately type the source of the print, with implications for conservation biology and forensic science.
  •  
6.
  • Edwards, Ceiridwen J., et al. (författare)
  • Ancient Hybridization and an Irish Origin for the Modern Polar Bear Matriline
  • 2011
  • Ingår i: Current Biology. - : Elsevier BV. - 0960-9822 .- 1879-0445. ; 21:15, s. 1251-1258
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Polar bears (Ursus maritimus) are among those species most susceptible to the rapidly changing arctic climate, and their survival is of global concern. Despite this, little is known about polar bear species history. Future conservation strategies would significantly benefit from an understanding of basic evolutionary information, such as the timing and conditions of their initial divergence from brown bears (U. arctos) or their response to previous environmental change. Results: We used a spatially explicit phylogeographic model to estimate the dynamics of 242 brown bear and polar bear matrilines sampled throughout the last 120,000 years and across their present and past geographic ranges. Our results show that the present distribution of these matrilines was shaped by a combination of regional stability and rapid, long-distance dispersal from ice-age refugia. In addition, hybridization between polar bears and brown bears may have occurred multiple times throughout the Late Pleistocene. Conclusions: The reconstructed matrilineal history of brown and polar bears has two striking features. First, it is punctuated by dramatic and discrete climate-driven dispersal events. Second, opportunistic mating between these two species as their ranges overlapped has left a strong genetic imprint. In particular, a likely genetic exchange with extinct Irish brown bears forms the origin of the modern polar bear matriline. This suggests that interspecific hybridization not only may be more common than previously considered but may be a mechanism by which species deal with marginal habitats during periods of environmental deterioration.
  •  
7.
  • Feng, Shaohong, et al. (författare)
  • Dense sampling of bird diversity increases power of comparative genomics
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 587:7833
  • Tidskriftsartikel (refereegranskat)abstract
    • Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity(1-4). Sparse taxon sampling has previously been proposed to confound phylogenetic inference(5), and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species. A dataset of the genomes of 363 species from the Bird 10,000 Genomes Project shows increased power to detect shared and lineage-specific variation, demonstrating the importance of phylogenetically diverse taxon sampling in whole-genome sequencing.
  •  
8.
  • Genereux, Diane P., et al. (författare)
  • A comparative genomics multitool for scientific discovery and conservation
  • 2020
  • Ingår i: Nature. - : NATURE RESEARCH. - 0028-0836 .- 1476-4687. ; 587:7833, s. 240-245
  • Tidskriftsartikel (refereegranskat)abstract
    • A whole-genome alignment of 240 phylogenetically diverse species of eutherian mammal-including 131 previously uncharacterized species-from the Zoonomia Project provides data that support biological discovery, medical research and conservation. The Zoonomia Project is investigating the genomics of shared and specialized traits in eutherian mammals. Here we provide genome assemblies for 131 species, of which all but 9 are previously uncharacterized, and describe a whole-genome alignment of 240 species of considerable phylogenetic diversity, comprising representatives from more than 80% of mammalian families. We find that regions of reduced genetic diversity are more abundant in species at a high risk of extinction, discern signals of evolutionary selection at high resolution and provide insights from individual reference genomes. By prioritizing phylogenetic diversity and making data available quickly and without restriction, the Zoonomia Project aims to support biological discovery, medical research and the conservation of biodiversity.
  •  
9.
  • Ho, Simon Y. W., et al. (författare)
  • Correlating Bayesian date estimates with climatic events and domestication using a bovine case study.
  • 2008
  • Ingår i: Biology Letters. - : The Royal Society. - 1744-9561 .- 1744-957X. ; 4:4, s. 370-374
  • Tidskriftsartikel (refereegranskat)abstract
    • The tribe Bovini contains a number of commercially and culturally important species, such as cattle. Understanding their evolutionary time scale is important for distinguishing between post-glacial and domestication-associated population expansions, but estimates of bovine divergence times have been hindered by a lack of reliable calibration points. We present a Bayesian phylogenetic analysis of 481 mitochondrial D-loop sequences, including 228 radiocarbon-dated ancient DNA sequences, using a multi-demographic coalescent model. By employing the radiocarbon dates as internal calibrations, we co-estimate the bovine phylogeny and divergence times in a relaxed-clock framework. The analysis yields evidence for significant population expansions in both taurine and zebu cattle, European aurochs and yak clades. The divergence age estimates support domestication-associated expansion times (less than 12 kyr) for the major haplogroups of cattle. We compare the molecular and palaeontological estimates for the Bison-Bos divergence.
  •  
10.
  • Jarvis, Erich D., et al. (författare)
  • Whole-genome analyses resolve early branches in the tree of life of modern birds
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 346:6215, s. 1320-1331
  • Tidskriftsartikel (refereegranskat)abstract
    • To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21
Typ av publikation
tidskriftsartikel (21)
Typ av innehåll
refereegranskat (20)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Shapiro, Beth (21)
Willerslev, Eske (9)
Gilbert, M. Thomas P ... (9)
Dalen, Love (7)
Ryder, Oliver A. (7)
Orlando, Ludovic (6)
visa fler...
Zhang, Guojie (6)
Lindblad-Toh, Kersti ... (5)
Götherström, Anders (5)
Karlsson, Elinor K. (5)
Hofreiter, Michael (5)
Koepfli, Klaus-Peter (5)
Marques-Bonet, Tomas (5)
Kosintsev, Pavel (4)
Sicheritz-Ponten, Th ... (4)
Petersen, Bent (4)
Cooper, Alan (3)
Rasmussen, Morten (3)
Ho, Simon Y. W. (3)
Swofford, Ross (3)
Edwards, Scott V. (3)
Nielsen, Rasmus (3)
Sinding, Mikkel-Holg ... (3)
Diekhans, Mark (3)
Jarvis, Erich D. (3)
Paten, Benedict (3)
Barnes, Ian (3)
Lorenzen, Eline D. (3)
Vartanyan, Sergey (3)
Andersson, Leif (2)
Di Palma, Federica (2)
Ray, David A. (2)
Haussler, David (2)
Johnson, Jeremy (2)
Stenderup, Jesper (2)
Margaryan, Ashot (2)
Bruford, Michael W. (2)
Leonard, Jennifer A. (2)
Rubin, Carl-Johan (2)
Li, Xue (2)
Zhou, Qi (2)
Armstrong, Joel (2)
Suh, Alexander (2)
Wang, Jian (2)
Raghavan, Maanasa (2)
van der Valk, Tom (2)
Pollard, Katherine S ... (2)
Seguin-Orlando, Anda ... (2)
Kirillova, Irina (2)
Fumagalli, Matteo (2)
visa färre...
Lärosäte
Naturhistoriska riksmuseet (6)
Stockholms universitet (4)
Karolinska Institutet (2)
Sveriges Lantbruksuniversitet (2)
Umeå universitet (1)
visa fler...
Lunds universitet (1)
visa färre...
Språk
Engelska (21)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (18)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy