SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shaw Christopher E) srt2:(2020-2022);hsvcat:3"

Sökning: WFRF:(Shaw Christopher E) > (2020-2022) > Medicin och hälsovetenskap

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbafati, Cristiana, et al. (författare)
  • 2020
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Lahrouchi, Najim, et al. (författare)
  • Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome
  • 2020
  • Ingår i: Circulation. - : Lippincott Williams & Wilkins. - 0009-7322 .- 1524-4539. ; 142:4, s. 324-338
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Long QT syndrome (LQTS) is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. A causal rare genetic variant with large effect size is identified in up to 80% of probands (genotype positive) and cascade family screening shows incomplete penetrance of genetic variants. Furthermore, a proportion of cases meeting diagnostic criteria for LQTS remain genetically elusive despite genetic testing of established genes (genotype negative). These observations raise the possibility that common genetic variants with small effect size contribute to the clinical picture of LQTS. This study aimed to characterize and quantify the contribution of common genetic variation to LQTS disease susceptibility. Methods: We conducted genome-wide association studies followed by transethnic meta-analysis in 1656 unrelated patients with LQTS of European or Japanese ancestry and 9890 controls to identify susceptibility single nucleotide polymorphisms. We estimated the common variant heritability of LQTS and tested the genetic correlation between LQTS susceptibility and other cardiac traits. Furthermore, we tested the aggregate effect of the 68 single nucleotide polymorphisms previously associated with the QT-interval in the general population using a polygenic risk score. Results: Genome-wide association analysis identified 3 loci associated with LQTS at genome-wide statistical significance (P<5x10(-8)) nearNOS1AP,KCNQ1, andKLF12, and 1 missense variant inKCNE1(p.Asp85Asn) at the suggestive threshold (P<10(-6)). Heritability analyses showed that approximate to 15% of variance in overall LQTS susceptibility was attributable to common genetic variation (h2SNP0.148; standard error 0.019). LQTS susceptibility showed a strong genome-wide genetic correlation with the QT-interval in the general population (r(g)=0.40;P=3.2x10(-3)). The polygenic risk score comprising common variants previously associated with the QT-interval in the general population was greater in LQTS cases compared with controls (P<10-13), and it is notable that, among patients with LQTS, this polygenic risk score was greater in patients who were genotype negative compared with those who were genotype positive (P<0.005). Conclusions: This work establishes an important role for common genetic variation in susceptibility to LQTS. We demonstrate overlap between genetic control of the QT-interval in the general population and genetic factors contributing to LQTS susceptibility. Using polygenic risk score analyses aggregating common genetic variants that modulate the QT-interval in the general population, we provide evidence for a polygenic architecture in genotype negative LQTS.
  •  
3.
  • Hop, Paul J., et al. (författare)
  • Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS
  • 2022
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science. - 1946-6234 .- 1946-6242. ; 14:633
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an estimated heritability between 40 and 50%. DNA methylation patterns can serve as proxies of (past) exposures and disease progression, as well as providing a potential mechanism that mediates genetic or environmental risk. Here, we present a blood-based epigenome-wide association study meta-analysis in 9706 samples passing stringent quality control (6763 patients, 2943 controls). We identified a total of 45 differentially methylated positions (DMPs) annotated to 42 genes, which are enriched for pathways and traits related to metabolism, cholesterol biosynthesis, and immunity. We then tested 39 DNA methylation-based proxies of putative ALS risk factors and found that high-density lipoprotein cholesterol, body mass index, white blood cell proportions, and alcohol intake were independently associated with ALS. Integration of these results with our latest genome-wide association study showed that cholesterol biosynthesis was potentially causally related to ALS. Last, DNA methylation at several DMPs and blood cell proportion estimates derived from DNA methylation data were associated with survival rate in patients, suggesting that they might represent indicators of underlying disease processes potentially amenable to therapeutic interventions.
  •  
4.
  • Hsu, Jack W., et al. (författare)
  • Collection of Peripheral Blood Progenitor Cells in 1 Day Is Associated with Decreased Donor Toxicity Compared to 2 Days in Unrelated Donors
  • 2020
  • Ingår i: Biology of blood and marrow transplantation. - : Elsevier BV. - 1083-8791 .- 1523-6536. ; 26:6, s. 1210-1217
  • Tidskriftsartikel (refereegranskat)abstract
    • Peripheral blood stem cells (PBSCs) have been increasingly used for allogeneic hematopoietic cell transplantation instead of bone marrow stem cells. Current National Marrow Donor Program policy recommends 5 days of daily filgrastim, followed by either 1 or 2 days of apheresis for unrelated donors, depending on collection center choice. To date, there are no published studies comparing the differences in donor experience between 1 day and 2 days of apheresis. We examined 22,348 adult unrelated donor collections in 184 centers between 2006 and 2016. Of these 22,348 donors, 20,004 (89.5%) had collection on 1 day, and the other 2344 (9.5%) had collection over 2 days. Information on why donors underwent apheresis in 1 day or 2 days was not available. Donors who underwent apheresis in 1 day were more likely to be male (67% versus 46%; P < .001), younger (age <30 years, 48% versus 36%; P < .001), and have a higher body weight (83.0 kg versus 75.9 kg; P< .001) and body mass index (BMI; >30, 30% versus 22%; P < .001). Successful collection of the requested CD34(+) cell count was achieved on the first day in 82% of 1-day collections and in 16% of 2-day collections. Despite not administering filgrastim the evening after the first day of collection in patients who underwent 2 days of apheresis, the median concentration of CD34' cells/I, in the product was higher on the second day of apheresis compared with the first day (23.8 x 10(6) CD34(+)/L. on day 1 versus 28.7 x 10(6) CD34(+)/L. on day 2; P< .001). Donors who underwent collection in 1 day were less likely to experience citrate toxicity (36% versus 52%; P< .001), hospitalization (1% versus 6%; P< .001), and other side effects related to apheresis (Modified Toxicity Criteria incidence: 20% versus 26%; P < .001). Female sex, older age, collection via central lines, and higher BMI were factors associated with greater likelihood for the development of toxicity, whereas less toxicity was noted in those with higher CD34(+) counts and more blood processed on the first day of collection. We conclude that although unrelated donors can be successfully collected in 1 day or 2 days, 1-day apheresis procedures were associated with less overall toxicity, and thus we recommend single-day collections, especially if the requested number of cells have been collected in 1 day.
  •  
5.
  • Farhadfar, Nosha, et al. (författare)
  • Weighty choices : selecting optimal G-CSF doses for stem cell mobilization to optimize yield
  • 2020
  • Ingår i: Blood Advances. - : AMER SOC HEMATOLOGY. - 2473-9529 .- 2473-9537. ; 4:4, s. 706-716
  • Tidskriftsartikel (refereegranskat)abstract
    • There are limited data on the effect of donor body mass index (BMI) on peripheral blood stem cell (PBSC) mobilization response to granulocyte colony-stimulating factor (G-CSF), especially in unrelated donors. Obesity has been associated with persistent leukocytosis, elevated circulating progenitor cells, and enhanced stem cell mobilization. Therefore, we hypothesized that adequate collection of CD34(+) cells may be achieved with lower doses (per kilogram of body weight) of G-CSF in donors with higher BMI compared with donors with lower BMI. Using the Center for International Blood and Marrow Transplant Research database, we evaluated the impact of donor BMI on G-CSF-mobilized PBSC yield in healthy unrelated donors. We examined 20 884 PBSC donations collected at National Marrow Donor Program centers between 2006 and 2016. We found significantly higher collection yields in obese and severely obese donors compared with normal and overweight donors. An increase in average daily G-CSF dose was associated with an increase in stem cell yield in donors with normal or overweight BMI. In contrast, an increase in average daily G-CSF dose beyond 780 mu g per day in obese and 900 mg per day in severely obese donors did not increase cell yield. Pain and toxicities were assessed at baseline, during G-CSF administration, and postcollection. Obesity was associated with higher levels of self-reported donation-related pain and toxicities in the pericollection and early postdonation recovery periods. This study suggests a maximum effective G-CSF dose for PBSC mobilization in obese and severely obese donors, beyond which higher doses of G-CSF add no increased yield.
  •  
6.
  • Iacoangeli, Alfredo, et al. (författare)
  • SCFD1 expression quantitative trait loci in amyotrophic lateral sclerosis are differentially expressed
  • 2021
  • Ingår i: Brain Communications. - : Oxford University Press. - 2632-1297. ; 3:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence indicates that common variants found in genome-wide association studies increase risk of disease through gene regulation via expression Quantitative Trait Loci. Using multiple genome-wide methods, we examined if Single Nucleotide Polymorphisms increase risk of Amyotrophic Lateral Sclerosis through expression Quantitative Trait Loci, and whether expression Quantitative Trait Loci expression is consistent across people who had Amyotrophic Lateral Sclerosis and those who did not. In combining public expression Quantitative Trait Loci data with Amyotrophic Lateral Sclerosis genome-wide association studies, we used Summary-data-based Mendelian Randomization to confirm that SCFD1 was the only gene that was genome-wide significant in mediating Amyotrophic Lateral Sderosis risk via expression Quantitative Trait Loci (Summary-data-based Mendelian Randomization beta = 0.20, standard error = 0.04, P-value = 4.29 x 10(-6)). Using post-mortem motor cortex, we tested whether expression Quantitative Trait Loci showed significant differences in expression between Amyotrophic Lateral Sclerosis (n= 76) and controls (n= 25), genome-wide. Of 20 757 genes analysed, the two most sign ificant expression Quantitative Trait Loci to show differential in expression between Amyotrophic Lateral Sclerosis and controls involve two known Amyotrophic Lateral Sclerosis genes (SCFD1 and VCP). Cis-acting SCFD1 expression Quantitative Trait Loci downstream of the gene showed significant differences in expression between Amyotrophic Lateral Sclerosis and controls (top expression Quantitative Trait Lod beta = 0.34, standard error = 0.063, P-value = 4.54 x 10(-7)). These SCFD1 expression Quantitative Trait Loci also significantly modified Amyotrophic Lateral Sclerosis survival (number of samples = 4265, hazard ratio = 1.11, 95% confidence interval = 1.05-1.17, P-value = 2.06 x 10(-4)) and act as an Amyotrophic Lateral Sclerosis trans-expression Quantitative Trait Loci hotspot for a wider network of genes enriched for SCFD1 function and Amyotrophic Lateral Sderosis pathways. Using gene-set analyses, we found the genes that correlate with this trans-expression Quantitative Trait Loci hotspot significantly increase risk of Amyotrophic La teral Sderosis (beta = 0.247, standard deviation = 0.017, P= 0.001) and schizophrenia (beta = 0.263, standard deviation = 0.008, P-value 1.18 x 10(-5)), a disease that genetically correlates with Amyotrophic Lateral Sclerosis. In summary, SCFD1 expression Quantitative Trait Lod are a major factor in Amyotrophic Lateral Sderosis, not only influencing disease risk but are differentially expressed in post-mortem Amyotrophic Lateral Sclerosis. SCFD1 expression Quantitative Trait Loci show distinct expression profiles in Amyotrophic Lateral Sclerosis that correlate with a wider network of genes that also confer risk of the disease and modify the disease's duration.
  •  
7.
  • Aguiar-Pulido, Vanessa, et al. (författare)
  • Systems biology analysis of human genomes points to key pathways conferring spina bifida risk
  • 2021
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 118:51
  • Tidskriftsartikel (refereegranskat)abstract
    • Spina bifida (SB) is a debilitating birth defect caused by multiple gene and environment interactions. Though SB shows non-Mendelian inheritance, genetic factors contribute to an estimated 70% of cases. Nevertheless, identifying human mutations conferring SB risk is challenging due to its relative rarity, genetic heterogeneity, incomplete penetrance, and environmental influences that hamper genome-wide association studies approaches to untargeted discovery. Thus, SB genetic studies may suffer from population substructure and/or selection bias introduced by typical candidate gene searches. We report a population based, ancestry-matched whole-genome sequence analysis of SB genetic predisposition using a systems biology strategy to interrogate 298 case-control subject genomes (149 pairs). Genes that were enriched in likely gene disrupting (LGD), rare protein-coding variants were subjected to machine learning analysis to identify genes in which LGD variants occur with a different frequency in cases versus controls and so discriminate between these groups. Those genes with high discriminatory potential for SB significantly enriched pathways pertaining to carbon metabolism, inflammation, innate immunity, cytoskeletal regulation, and essential transcriptional regulation consistent with their having impact on the pathogenesis of human SB. Additionally, an interrogation of conserved noncoding sequences identified robust variant enrichment in regulatory regions of several transcription factors critical to embryonic development. This genome-wide perspective offers an effective approach to the interrogation of coding and noncoding sequence variant contributions to rare complex genetic disorders.
  •  
8.
  • Chan, Young, et al. (författare)
  • Reinnervation as measured by the motor unit size index is associated with preservation of muscle strength in amyotrophic lateral sclerosis, but not all muscles reinnervate
  • 2022
  • Ingår i: Muscle and Nerve. - : John Wiley & Sons. - 0148-639X .- 1097-4598. ; 65:2, s. 203-210
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction/Aims: The motor unit size index (MUSIX) may provide insight into reinnervation patterns in diseases such as amyotrophic lateral sclerosis (ALS). However, it is not known whether MUSIX detects clinically relevant changes in reinnervation, or if all muscles manifest changes in MUSIX in response to reinnervation after motor unit loss.Methods: Fifty-seven patients with ALS were assessed at 3-month intervals for 12 months in four centers. Muscles examined were abductor pollicis brevis, abductor digiti minimi, biceps brachii, and tibialis anterior. Results were split into two groups: muscles with increases in MUSIX and those without increases. Longitudinal changes in MUSIX, motor unit number index (MUNIX), compound muscle action potential amplitude, and Medical Research Council strength score were investigated.Results: One hundred thirty-three muscles were examined. Fifty-nine percent of the muscles exhibited an increase in MUSIX during the study. Muscles with MUSIX increases lost more motor units (58% decline in MUNIX at 12 months, P <.001) than muscles that did not increase MUSIX (34.6% decline in MUNIX at 12 months, P <.001). However, longitudinal changes in muscle strength were similar. When motor unit loss was similar, the absence of a MUSIX increase was associated with a significantly greater loss of muscle strength (P =.002).Discussion: MUSIX increases are associated with greater motor unit loss but relative preservation of muscle strength. Thus, MUSIX appears to be measuring a clinically relevant response that can provide a quantitative outcome measure of reinnervation in clinical trials. Furthermore, MUSIX suggests that reinnervation may play a major role in determining the progression of weakness.
  •  
9.
  • Li, Yan, et al. (författare)
  • Validation of Plasma Amyloid-β 42/40 for Detecting Alzheimer Disease Amyloid Plaques
  • 2022
  • Ingår i: Neurology. - 0028-3878. ; 98:7, s. 688-699
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Objectives To determine the diagnostic accuracy of a plasma Aβ42/Aβ40 assay in classifying amyloid PET status across global research studies using samples collected by multiple centers that utilize different blood collection and processing protocols.MethodsPlasma samples (n = 465) were obtained from 3 large Alzheimer disease (AD) research cohorts in the United States (n = 182), Australia (n = 183), and Sweden (n = 100). Plasma Aβ42/Aβ40 was measured by a high precision immunoprecipitation mass spectrometry (IPMS) assay and compared to the reference standards of amyloid PET and CSF Aβ42/Aβ40.ResultsIn the combined cohort of 465 participants, plasma Aβ42/Aβ40 had good concordance with amyloid PET status (receiver operating characteristic area under the curve [AUC] 0.84, 95% confidence interval [CI] 0.80-0.87); concordance improved with the inclusion of APOE ϵ4 carrier status (AUC 0.88, 95% CI 0.85-0.91). The AUC of plasma Aβ42/Aβ40 with CSF amyloid status was 0.85 (95% CI 0.78-0.91) and improved to 0.93 (95% CI 0.89-0.97) with APOE ϵ4 status. These findings were consistent across the 3 cohorts, despite differences in protocols. The assay performed similarly in both cognitively unimpaired and impaired individuals.DiscussionPlasma Aβ42/Aβ40 is a robust measure for detecting amyloid plaques and can be utilized to aid in the diagnosis of AD, identify those at risk for future dementia due to AD, and improve the diversity of populations enrolled in AD research and clinical trials.Classification of EvidenceThis study provides Class II evidence that plasma Aβ42/Aβ40, as measured by a high precision IPMS assay, accurately diagnoses brain amyloidosis in both cognitively unimpaired and impaired research participants.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy