1. |
|
|
2. |
- Klionsky, Daniel J., et al.
(författare)
-
Guidelines for the use and interpretation of assays for monitoring autophagy
- 2012
-
Ingår i: Autophagy. - : Landes Bioscience. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
-
Forskningsöversikt (refereegranskat)abstract
- In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
|
|
3. |
- Jin, Ying-Hui, et al.
(författare)
-
Chemoprophylaxis, diagnosis, treatments, and discharge management of COVID-19 : An evidence-based clinical practice guideline (updated version)
- 2020
-
Ingår i: Military Medical Research. - : BioMed Central (BMC). - 2054-9369. ; 7:1
-
Tidskriftsartikel (refereegranskat)abstract
- The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a rapidly spreading illness, coronavirus disease 2019 (COVID-19), affecting more than seventeen million people around the world. Diagnosis and treatment guidelines for clinicians caring for patients are needed. In the early stage, we have issued "A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version)"; now there are many direct evidences emerged and may change some of previous recommendations and it is ripe for develop an evidence-based guideline. We formed a working group of clinical experts and methodologists. The steering group members proposed 29 questions that are relevant to the management of COVID-19 covering the following areas: chemoprophylaxis, diagnosis, treatments, and discharge management. We searched the literature for direct evidence on the management of COVID-19, and assessed its certainty generated recommendations using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. Recommendations were either strong or weak, or in the form of ungraded consensus-based statement. Finally, we issued 34 statements. Among them, 6 were strong recommendations for, 14 were weak recommendations for, 3 were weak recommendations against and 11 were ungraded consensus-based statement. They covered topics of chemoprophylaxis (including agents and Traditional Chinese Medicine (TCM) agents), diagnosis (including clinical manifestations, reverse transcription-polymerase chain reaction (RT-PCR), respiratory tract specimens, IgM and IgG antibody tests, chest computed tomography, chest x-ray, and CT features of asymptomatic infections), treatments (including lopinavir-ritonavir, umifenovir, favipiravir, interferon, remdesivir, combination of antiviral drugs, hydroxychloroquine/chloroquine, interleukin-6 inhibitors, interleukin-1 inhibitors, glucocorticoid, qingfei paidu decoction, lianhua qingwen granules/capsules, convalescent plasma, lung transplantation, invasive or noninvasive ventilation, and extracorporeal membrane oxygenation (ECMO)), and discharge management (including discharge criteria and management plan in patients whose RT-PCR retesting shows SARS-CoV-2 positive after discharge). We also created two figures of these recommendations for the implementation purpose. We hope these recommendations can help support healthcare workers caring for COVID-19 patients.
|
|
4. |
- Qian, Yan, et al.
(författare)
-
Quantification for total demethylation potential of environmental samples utilizing the EGFP reporter gene
- 2016
-
Ingår i: Journal of Hazardous Materials. - : Elsevier. - 0304-3894 .- 1873-3336. ; 306, s. 278-285
-
Tidskriftsartikel (refereegranskat)abstract
- Abstract The demethylation potential of pollutants is arguably an innate component of their toxicity in environmental samples. A method was developed for determining the total demethylation potential of food samples (TDQ). The demethylation epigenetic toxicity was determined using the Hep G2 cell line transfected with pEGFP-C3 plasmids containing a methylated promoter of the EGFP reporter gene. The total demethylation potential of the sample extracts (the 5-AZA-CdR demethylation toxic equivalency) can be quantified within one week by using a standard curve of the 5-AZA-CdR demethylation agent. To explore the applicability of TDQ for environmental samples, 17 groundwater samples were collected from heavy polluted Kuihe river and the total demethylation potentials of the sample extracts were measured successfully. Meaningful demethylation toxic equivalencies ranging from 0.00050 to 0.01747 μM were found in all groundwater sample extracts. Among 19 kinds of inorganic substance, As and Cd played important roles for individual contribution to the total demethylation epigenetic toxicity. The TDQ assay is reliable and fast for quantifying the DNA demethylation potential of environmental sample extracts, which may improve epigenetic toxicity evaluations for human risk assessment, and the consistent consuming of groundwater alongside the Kuihe river pose unexpected epigenetic health risk to the local residents.
|
|
5. |
- Aad, G, et al.
(författare)
-
- 2015
-
swepub:Mat__t
|
|
6. |
|
|
7. |
|
|
8. |
|
|
9. |
|
|
10. |
|
|