SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shin Yunne Jai) ;mspu:(article)"

Sökning: WFRF:(Shin Yunne Jai) > Tidskriftsartikel

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bustamante, Mercedes, et al. (författare)
  • Ten New Insights in Climate Science 2023/2024
  • 2023
  • Ingår i: Global Sustainability. - 2059-4798.
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-technical summary: We identify a set of essential recent advances in climate change research with high policy relevance, across natural and social sciences: (1) looming inevitability and implications of overshooting the 1.5°C warming limit, (2) urgent need for a rapid and managed fossil fuel phase-out, (3) challenges for scaling carbon dioxide removal, (4) uncertainties regarding the future contribution of natural carbon sinks, (5) intertwinedness of the crises of biodiversity loss and climate change, (6) compound events, (7) mountain glacier loss, (8) human immobility in the face of climate risks, (9) adaptation justice, and (10) just transitions in food systems. Technical summary The IPCC Assessment Reports offer the scientific foundation for international climate negotiations and constitute an unmatched resource for climate change researchers. However, the assessment cycles take multiple years. As a contribution to cross- and interdisciplinary understanding across diverse climate change research communities, we have streamlined an annual process to identify and synthesise essential research advances. We collected input from experts on different fields using an online questionnaire and prioritised a set of ten key research insights with high policy relevance. This year we focus on: (1) looming overshoot of the 1.5°C warming limit, (2) urgency of phasing-out fossil fuels, (3) challenges for scaling carbon dioxide removal, (4) uncertainties regarding the future of natural carbon sinks, (5) need for join governance of biodiversity loss and climate change, (6) advances in the science of compound events, (7) mountain glacier loss, (8) human immobility in the face of climate risks, (9) adaptation justice, and (10) just transitions in food systems. We first present a succinct account of these Insights, reflect on their policy implications, and offer an integrated set of policy relevant messages. This science synthesis and science communication effort is also the basis for a report targeted to policymakers as a contribution to elevate climate science every year, in time for the UNFCCC COP. Social media summary We highlight recent and policy-relevant advances in climate change research - with input from more than 200 experts 1.
  •  
2.
  • Kim, HyeJin, et al. (författare)
  • Towards a better future for biodiversity and people : Modelling Nature Futures
  • 2023
  • Ingår i: Global Environmental Change. - 0959-3780 .- 1872-9495. ; 82
  • Tidskriftsartikel (refereegranskat)abstract
    • The Nature Futures Framework (NFF) is a heuristic tool for co-creating positive futures for nature and people. It seeks to open up a diversity of futures through mainly three value perspectives on nature - Nature for Nature, Nature for Society, and Nature as Culture. This paper describes how the NFF can be applied in modelling to support decision-making. First, we describe key considerations for the NFF in developing qualitative and quantitative scenarios: i) multiple value perspectives on nature as a state space where pathways improving nature toward a frontier can be represented, ii) mutually reinforcing key feedbacks of social-ecological systems that are important for nature conservation and human wellbeing, iii) indicators of multiple knowledge systems describing the evolution of complex social-ecological dynamics. We then present three approaches to modelling Nature Futures scenarios in the review, screening, and design phases of policy processes. This paper seeks to facilitate the integration of relational values of nature in models and strengthen modelled linkages across biodiversity, nature's contributions to people, and quality of life.
  •  
3.
  • Lotze, Heike K., et al. (författare)
  • Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 116:26, s. 12907-12912
  • Tidskriftsartikel (refereegranskat)abstract
    • While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (+/- 4% SD) under low emissions and 17% (+/- 11% SD) under high emissions by 2100, with an average 5% decline for every 1 degrees C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.
  •  
4.
  • Sitas, Nadia, et al. (författare)
  • Exploring the usefulness of scenario archetypes in science-policy processes : experience across IPBES assessments
  • 2019
  • Ingår i: Ecology & Society. - 1708-3087. ; 24:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Scenario analyses have been used in multiple science-policy assessments to better understand complex plausible futures. Scenario archetype approaches are based on the fact that many future scenarios have similar underlying storylines, assumptions, and trends in drivers of change, which allows for grouping of scenarios into typologies, or archetypes, facilitating comparisons between a large range of studies. The use of scenario archetypes in environmental assessments foregrounds important policy questions and can be used to codesign interventions tackling future sustainability issues. Recently, scenario archetypes were used in four regional assessments and one ongoing global assessment within the Intergovernmental Science-Policy Platform for Biodiversity and Ecosystem Services (IPBES). The aim of these assessments was to provide decision makers with policy-relevant knowledge about the state of biodiversity, ecosystems, and the contributions they provide to people. This paper reflects on the usefulness of the scenario archetype approach within science-policy processes, drawing on the experience from the IPBES assessments. Using a thematic analysis of (a) survey data collected from experts involved in the archetype analyses across IPBES assessments, (b) notes from IPBES workshops, and (c) regional assessment chapter texts, we synthesize the benefits, challenges, and frontiers of applying the scenario archetype approach in a science-policy process. Scenario archetypes were perceived to allow syntheses of large amounts of information for scientific, practice-, and policy-related purposes, streamline key messages from multiple scenario studies, and facilitate communication of them to end users. In terms of challenges, they were perceived as subjective in their interpretation, oversimplifying information, having a limited applicability across scales, and concealing contextual information and novel narratives. Finally, our results highlight what methodologies, applications, and frontiers in archetype-based research should be explored in the future. These advances can assist the design of future large-scale sustainability-related assessment processes, aiming to better support decisions and interventions for equitable and sustainable futures.
  •  
5.
  • Tittensor, Derek P., et al. (författare)
  • A protocol for the intercomparison of marine fishery and ecosystem models : Fish-MIP v1.0
  • 2018
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 11:4, s. 1421-1442
  • Tidskriftsartikel (refereegranskat)abstract
    • Model intercomparison studies in the climate and Earth sciences communities have been crucial to building credibility and coherence for future projections. They have quantified variability among models, spurred model development, contrasted within- and among-model uncertainty, assessed model fits to historical data, and provided ensemble projections of future change under specified scenarios. Given the speed and magnitude of anthropogenic change in the marine environment and the consequent effects on food security, biodiversity, marine industries, and society, the time is ripe for similar comparisons among models of fisheries and marine ecosystems. Here, we describe the Fisheries and Marine Ecosystem Model Intercomparison Project protocol version 1.0 (Fish-MIP v1.0), part of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is a cross-sectoral network of climate impact modellers. Given the complexity of the marine ecosystem, this class of models has substantial heterogeneity of purpose, scope, theoretical underpinning, processes considered, parameterizations, resolution (grain size), and spatial extent. This heterogeneity reflects the lack of a unified understanding of the marine ecosystem and implies that the assemblage of all models is more likely to include a greater number of relevant processes than any single model. The current Fish-MIP protocol is designed to allow these heterogeneous models to be forced with common Earth System Model (ESM) Coupled Model Intercomparison Project Phase 5 (CMIP5) outputs under prescribed scenarios for historic (from the 1950s) and future (to 2100) time periods; it will be adapted to CMIP phase 6 (CMIP6) in future iterations. It also describes a standardized set of outputs for each participating Fish-MIP model to produce. This enables the broad characterization of differences between and uncertainties within models and projections when assessing climate and fisheries impacts on marine ecosystems and the services they provide. The systematic generation, collation, and comparison of results from Fish-MIP will inform an understanding of the range of plausible changes in marine ecosystems and improve our capacity to define and convey the strengths and weaknesses of model-based advice on future states of marine ecosystems and fisheries. Ultimately, Fish-MIP represents a step towards bringing together the marine ecosystem modelling community to produce consistent ensemble medium- and long-term projections of marine ecosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy