SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sigsgaard Torben) ;pers:(Peters Annette)"

Sökning: WFRF:(Sigsgaard Torben) > Peters Annette

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arthur Hvidtfeldt, Ulla, et al. (författare)
  • Long-term exposure to fine particle elemental components and lung cancer incidence in the ELAPSE pooled cohort
  • 2021
  • Ingår i: Environmental Research. - : Elsevier BV. - 0013-9351 .- 1096-0953. ; 193
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: An association between long-term exposure to fine particulate matter (PM2.5) and lung cancer has been established in previous studies. PM2.5 is a complex mixture of chemical components from various sources and little is known about whether certain components contribute specifically to the associated lung cancer risk. The present study builds on recent findings from the Effects of Low-level Air Pollution: A Study in Europe (ELAPSE) collaboration and addresses the potential association between specific elemental components of PM2.5 and lung cancer incidence.Methods: We pooled seven cohorts from across Europe and assigned exposure estimates for eight components of PM2.5 representing non-tail pipe emissions (copper (Cu), iron (Fe), and zinc (Zn)), long-range transport (sulfur (S)), oil burning/industry emissions (nickel (Ni), vanadium (V)), crustal material (silicon (Si)), and biomass burning (potassium (K)) to cohort participants' baseline residential address based on 100 m by 100 m grids from newly developed hybrid models combining air pollution monitoring, land use data, satellite observations, and dispersion model estimates. We applied stratified Cox proportional hazards models, adjusting for potential confounders (age, sex, calendar year, marital status, smoking, body mass index, employment status, and neighborhood-level socio-economic status).Results: The pooled study population comprised 306,550 individuals with 3916 incident lung cancer events during 5,541,672 person-years of follow-up. We observed a positive association between exposure to all eight components and lung cancer incidence, with adjusted HRs of 1.10 (95% CI 1.05, 1.16) per 50 ng/m(3) PM2.5 K, 1.09 (95% CI 1.02, 1.15) per 1 ng/m3 PM2.5 Ni, 1.22 (95% CI 1.11, 1.35) per 200 ng/m(3) PM2.5 S, and 1.07 (95% CI 1.02, 1.12) per 200 ng/m(3) PM2.5 V. Effect estimates were largely unaffected by adjustment for nitrogen dioxide (NO2). After adjustment for PM2.5 mass, effect estimates of K, Ni, S, and V were slightly attenuated, whereas effect estimates of Cu, Si, Fe, and Zn became null or negative.Conclusions: Our results point towards an increased risk of lung cancer in connection with sources of combustion particles from oil and biomass burning and secondary inorganic aerosols rather than non-exhaust traffic emissions. Specific limit values or guidelines targeting these specific PM2.5 components may prove helpful in future lung cancer prevention strategies.
  •  
2.
  • Hvidtfeldt, Ulla Arthur, et al. (författare)
  • Long-term low-level ambient air pollution exposure and risk of lung cancer - A pooled analysis of 7 European cohorts
  • 2021
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 146
  • Tidskriftsartikel (refereegranskat)abstract
    • Background/aim: Ambient air pollution has been associated with lung cancer, but the shape of the exposure-response function - especially at low exposure levels - is not well described. The aim of this study was to address the relationship between long-term low-level air pollution exposure and lung cancer incidence.Methods: The Effects of Low-level Air Pollution: a Study in Europe (ELAPSE) collaboration pools seven cohorts from across Europe. We developed hybrid models combining air pollution monitoring, land use data, satellite observations, and dispersion model estimates for nitrogen dioxide (NO2), fine particulate matter (PM2.5), black carbon (BC), and ozone (O-3) to assign exposure to cohort participants' residential addresses in 100 m by 100 m grids. We applied stratified Cox proportional hazards models, adjusting for potential confounders (age, sex, calendar year, marital status, smoking, body mass index, employment status, and neighborhood-level socioeconomic status). We fitted linear models, linear models in subsets, Shape-Constrained Health Impact Functions (SCHIF), and natural cubic spline models to assess the shape of the association between air pollution and lung cancer at concentrations below existing standards and guidelines.Results: The analyses included 307,550 cohort participants. During a mean follow-up of 18.1 years, 3956 incident lung cancer cases occurred. Median (Q1, Q3) annual (2010) exposure levels of NO2, PM2.5, BC and O-3 (warm season) were 24.2 mu g/m(3) (19.5, 29.7), 15.4 mu g/m(3) (12.8, 17.3), 1.6 10(-5)m(-1) (1.3, 1.8), and 86.6 mu g/m(3) (78.5, 92.9), respectively. We observed a higher risk for lung cancer with higher exposure to PM2.5 (HR: 1.13, 95% CI: 1.05, 1.23 per 5 mu g/m(3)). This association was robust to adjustment for other pollutants. The SCHIF, spline and subset analyses suggested a linear or supra-linear association with no evidence of a threshold. In subset analyses, risk estimates were clearly elevated for the subset of subjects with exposure below the EU limit value of 25 mu g/m(3). We did not observe associations between NO2, BC or O-3 and lung cancer incidence.Conclusions: Long-term ambient PM2.5 exposure is associated with lung cancer incidence even at concentrations below current EU limit values and possibly WHO Air Quality Guidelines.
  •  
3.
  • Liu, Shuo, et al. (författare)
  • Long-term exposure to low-level air pollution and incidence of asthma : the ELAPSE project
  • 2021
  • Ingår i: European Respiratory Journal. - : European Respiratory Society (ERS). - 0903-1936 .- 1399-3003. ; 57:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Long-term exposure to ambient air pollution has been linked to childhood-onset asthma, although evidence is still insufficient. Within the multicentre project Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), we examined the associations of long-term exposures to particulate matter with a diameter <2.5 mu m (PM2.5), nitrogen dioxide (NO2) and black carbon (BC) with asthma incidence in adults.Methods: We pooled data from three cohorts in Denmark and Sweden with information on asthma hospital diagnoses. The average concentrations of air pollutants in 2010 were modelled by hybrid land-use regression models at participants' baseline residential addresses. Associations of air pollution exposures with asthma incidence were explored with Cox proportional hazard models, adjusting for potential confounders.Results: Of 98326 participants, 1965 developed asthma during a mean follow-up of 16.6 years. We observed associations in fully adjusted models with hazard ratios of 1.22 (95% CI 1.04-1.43) per 5 mu g.m(-3) for PM2.5, 1.17 (95% CI 1.10-1.25) per 10 mu g.m(-3) for NO2 and 1.15 (95% CI 1.08-1.23) per 0.5 x 10(-5) m(-1) for BC. Hazard ratios were larger in cohort subsets with exposure levels below the European Union and US limit values and possibly World Health Organization guidelines for PM2.5 and NO2. NO 2 and BC estimates remained unchanged in two-pollutant models with PM2.5, whereas PM2.5 estimates were attenuated to unity. The concentration-response curves showed no evidence of a threshold.Conclusions: Long-term exposure to air pollution, especially from fossil fuel combustion sources such as motorised traffic, was associated with adult-onset asthma, even at levels below the current limit values.
  •  
4.
  • Liu, Shuo, et al. (författare)
  • Long-term exposure to low-level air pollution and incidence of chronic obstructive pulmonary disease : The ELAPSE project
  • 2021
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 146
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Air pollution has been suggested as a risk factor for chronic obstructive pulmonary disease (COPD), but evidence is sparse and inconsistent.Objectives: We examined the association between long-term exposure to low-level air pollution and COPD incidence.Methods: Within the 'Effects of Low-Level Air Pollution: A Study in Europe' (ELAPSE) study, we pooled data from three cohorts, from Denmark and Sweden, with information on COPD hospital discharge diagnoses. Hybrid land use regression models were used to estimate annual mean concentrations of particulate matter with a diameter < 2.5 mu m (PM2.5), nitrogen dioxide (NO2), and black carbon (BC) in 2010 at participants' baseline residential addresses, which were analysed in relation to COPD incidence using Cox proportional hazards models.Results: Of 98,058 participants, 4,928 developed COPD during 16.6 years mean follow-up. The adjusted hazard ratios (HRs) and 95% confidence intervals for associations with COPD incidence were 1.17 (1.06, 1.29) per 5 mu g/m(3) for PM2.5, 1.11 (1.06, 1.16) per 10 mu g/m(3) for NO2, and 1.11 (1.06, 1.15) per 0.5 10(-5) m(-1) for BC. Associations persisted in subset participants with PM2.5 or NO2 levels below current EU and US limit values and WHO guidelines, with no evidence for a threshold. HRs for NO2 and BC remained unchanged in two-pollutant models with PM2.5, whereas the HR for PM2.5 was attenuated to unity with NO2 or BC.Conclusions: Long-term exposure to low-level air pollution is associated with the development of COPD, even below current EU and US limit values and possibly WHO guidelines. Traffic-related pollutants NO2 and BC may be the most relevant.
  •  
5.
  • So, Rina, et al. (författare)
  • Long-term exposure to air pollution and liver cancer incidence in six European cohorts
  • 2021
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 149:11, s. 1887-1897
  • Tidskriftsartikel (refereegranskat)abstract
    • Particulate matter air pollution and diesel engine exhaust have been classified as carcinogenic for lung cancer, yet few studies have explored associations with liver cancer. We used six European adult cohorts which were recruited between 1985 and 2005, pooled within the Effects of low-level air pollution: A study in Europe (ELAPSE) project, and followed for the incidence of liver cancer until 2011 to 2015. The annual average exposure to nitrogen dioxide (NO2), particulate matter with diameter <2.5 mu m (PM2.5), black carbon (BC), warm-season ozone (O-3), and eight elemental components of PM2.5 (copper, iron, zinc, sulfur, nickel, vanadium, silicon, and potassium) were estimated by European-wide hybrid land-use regression models at participants' residential addresses. We analyzed the association between air pollution and liver cancer incidence by Cox proportional hazards models adjusting for potential confounders. Of 330 064 cancer-free adults at baseline, 512 developed liver cancer during a mean follow-up of 18.1 years. We observed positive linear associations between NO2 (hazard ratio, 95% confidence interval: 1.17, 1.02-1.35 per 10 mu g/m(3)), PM2.5 (1.12, 0.92-1.36 per 5 mu g/m(3)), and BC (1.15, 1.00-1.33 per 0.5 10(-5)/m) and liver cancer incidence. Associations with NO2 and BC persisted in two-pollutant models with PM2.5. Most components of PM2.5 were associated with the risk of liver cancer, with the strongest associations for sulfur and vanadium, which were robust to adjustment for PM2.5 or NO2. Our study suggests that ambient air pollution may increase the risk of liver cancer, even at concentrations below current EU standards.
  •  
6.
  • Stafoggia, Massimo, et al. (författare)
  • Long-term exposure to low ambient air pollution concentrations and mortality among 28 million people : results from seven large European cohorts within the ELAPSE project
  • 2022
  • Ingår i: The Lancet Planetary Health. - : Elsevier B.V.. - 2542-5196. ; 6:1, s. e9-e18
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Long-term exposure to ambient air pollution has been associated with premature mortality, but associations at concentrations lower than current annual limit values are uncertain. We analysed associations between low-level air pollution and mortality within the multicentre study Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE).Methods In this multicentre longitudinal study, we analysed seven population-based cohorts of adults (age ≥30 years) within ELAPSE, from Belgium, Denmark, England, the Netherlands, Norway, Rome (Italy), and Switzerland (enrolled in 2000–11; follow-up until 2011–17). Mortality registries were used to extract the underlying cause of death for deceased individuals. Annual average concentrations of fine particulate matter (PM2·5), nitrogen dioxide (NO2), black carbon, and tropospheric warm-season ozone (O3) from Europe-wide land use regression models at 100 m spatial resolution were assigned to baseline residential addresses. We applied cohort-specific Cox proportional hazard models with adjustment for area-level and individual-level covariates to evaluate associations with non-accidental mortality, as the main outcome, and with cardiovascular, non-malignant respiratory, and lung cancer mortality. Subset analyses of participants living at low pollutant concentrations (as per predefined values) and natural splines were used to investigate the concentration-response function. Cohort-specific effect estimates were pooled in a random-effects meta-analysis.Findings We analysed 28 153 138 participants contributing 257 859 621 person-years of observation, during which 3 593 741 deaths from non-accidental causes occurred. We found significant positive associations between non-accidental mortality and PM2·5, NO2, and black carbon, with a hazard ratio (HR) of 1·053 (95% CI 1·021–1·085) per 5 μg/m3 increment in PM2·5, 1·044 (1·019–1·069) per 10 μg/m3 NO2, and 1·039 (1·018–1·059) per 0·5 × 10−5/m black carbon. Associations with PM2·5, NO2, and black carbon were slightly weaker for cardiovascular mortality, similar for non-malignant respiratory mortality, and stronger for lung cancer mortality. Warm-season O3 was negatively associated with both non-accidental and cause-specific mortality. Associations were stronger at low concentrations: HRs for non-accidental mortality at concentrations lower than the WHO 2005 air quality guideline values for PM2·5 (10 μg/m3) and NO2 (40 μg/m3) were 1·078 (1·046–1·111) per 5 μg/m3 PM2·5 and 1·049 (1·024–1·075) per 10 μg/m3 NO2. Similarly, the association between black carbon and non-accidental mortality was highest at low concentrations, with a HR of 1·061 (1·032–1·092) for exposure lower than 1·5× 10−5/m, and 1·081 (0·966–1·210) for exposure lower than 1·0× 10−5/m.Interpretation Long-term exposure to concentrations of PM2·5 and NO2 lower than current annual limit values was associated with non-accidental, cardiovascular, non-malignant respiratory, and lung cancer mortality in seven large European cohorts. Continuing research on the effects of low concentrations of air pollutants is expected to further inform the process of setting air quality standards in Europe and other global regions.
  •  
7.
  • Thurston, George D, et al. (författare)
  • A joint ERS/ATS policy statement : what constitutes an adverse health effect of air pollution? An analytical framework
  • 2017
  • Ingår i: European Respiratory Journal. - : European Respiratory Society (ERS). - 0903-1936 .- 1399-3003. ; 49:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The American Thoracic Society has previously published statements on what constitutes an adverse effect on health of air pollution in 1985 and 2000. We set out to update and broaden these past statements that focused primarily on effects on the respiratory system. Since then, many studies have documented effects of air pollution on other organ systems, such as on the cardiovascular and central nervous systems. In addition, many new biomarkers of effects have been developed and applied in air pollution studies.This current report seeks to integrate the latest science into a general framework for interpreting the adversity of the human health effects of air pollution. Rather than trying to provide a catalogue of what is and what is not an adverse effect of air pollution, we propose a set of considerations that can be applied in forming judgments of the adversity of not only currently documented, but also emerging and future effects of air pollution on human health. These considerations are illustrated by the inclusion of examples for different types of health effects of air pollution.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy