SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sigsgaard Torben) ;pers:(Ström Lena)"

Sökning: WFRF:(Sigsgaard Torben) > Ström Lena

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mastepanov, Mikhail, et al. (författare)
  • Large tundra methane burst during onset of freezing.
  • 2008
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 456:7222, s. 58-628
  • Tidskriftsartikel (refereegranskat)abstract
    • Terrestrial wetland emissions are the largest single source of the greenhouse gas methane. Northern high-latitude wetlands contribute significantly to the overall methane emissions from wetlands, but the relative source distribution between tropical and high-latitude wetlands remains uncertain. As a result, not all the observed spatial and seasonal patterns of atmospheric methane concentrations can be satisfactorily explained, particularly for high northern latitudes. For example, a late-autumn shoulder is consistently observed in the seasonal cycles of atmospheric methane at high-latitude sites, but the sources responsible for these increased methane concentrations remain uncertain. Here we report a data set that extends hourly methane flux measurements from a high Arctic setting into the late autumn and early winter, during the onset of soil freezing. We find that emissions fall to a low steady level after the growing season but then increase significantly during the freeze-in period. The integral of emissions during the freeze-in period is approximately equal to the amount of methane emitted during the entire summer season. Three-dimensional atmospheric chemistry and transport model simulations of global atmospheric methane concentrations indicate that the observed early winter emission burst improves the agreement between the simulated seasonal cycle and atmospheric data from latitudes north of 60 degrees N. Our findings suggest that permafrost-associated freeze-in bursts of methane emissions from tundra regions could be an important and so far unrecognized component of the seasonal distribution of methane emissions from high latitudes.
  •  
2.
  • Mastepanov, Mikhail, et al. (författare)
  • Revisiting factors controlling methane emissions from high-Arctic tundra
  • 2013
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 10:7, s. 5139-5158
  • Tidskriftsartikel (refereegranskat)abstract
    • The northern latitudes are experiencing disproportionate warming relative to the mid-latitudes, and there is growing concern about feedbacks between this warming and methane production and release from high-latitude soils. Studies of methane emissions carried out in the Arctic, particularly those with measurements made outside the growing season, are underrepresented in the literature. Here we present results of 5 yr (2006-2010) of automatic chamber measurements at a high-Arctic location in Zackenberg, NE Greenland, covering both the growing seasons and two months of the following freeze-in periods. The measurements show clear seasonal dynamics in methane emission. The start of the growing season and the increase in CH4 fluxes were strongly related to the date of snowmelt. Within each particular growing season, CH4 fluxes were highly correlated with the soil temperature (R-2 > 0.75), which is probably explained by high seasonality of both variables, and weakly correlated with the water table. The greatest variability in fluxes between the study years was observed during the first part of the growing season. Somewhat surprisingly, this variability could not be explained by commonly known factors controlling methane emission, i.e. temperature and water table position. Late in the growing season CH4 emissions were found to be very similar between the study years (except the extremely dry 2010) despite large differences in climatic factors (temperature and water table). Late-season bursts of CH4 coinciding with soil freezing in the autumn were observed during at least three years. The cumulative emission during the freeze-in CH4 bursts was comparable in size with the growing season emission for the year 2007, and about one third of the growing season emissions for the years 2009 and 2010. In all three cases the CH4 burst was accompanied by a corresponding episodic increase in CO2 emission, which can compose a significant contribution to the annual CO2 flux budget. The most probable mechanism of the late-season CH4 and CO2 bursts is physical release of gases accumulated in the soil during the growing season. In this study we discuss possible links between growing season and autumn fluxes. Multiannual dynamics of the subsurface CH4 storage pool are hypothesized to be such a link and an important driver of intearannual variations in the fluxes, capable of overruling the conventionally known short-term control factors (temperature and water table). Our findings suggest the importance of multiyear studies with a continued focus on shoulder seasons in Arctic ecosystems.
  •  
3.
  • Tagesson, Torbern, et al. (författare)
  • High-resolution satellite data reveal an increase in peak growing season gross primary production in a high-Arctic wet tundra ecosystem 1992-2008
  • 2012
  • Ingår i: International Journal of Applied Earth Observation and Geoinformation. - : Elsevier BV. - 1569-8432. ; 18, s. 407-416
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic ecosystems play a key role in the terrestrial carbon cycle. Our aim was to combine satellite-based normalized difference vegetation index (NDVI) with field measurements of CO2 fluxes to investigate changes in gross primary production (GPP) for the peak growing seasons 1992-2008 in Rylekaerene, a wet tundra ecosystem in the Zackenberg valley, north-eastern Greenland. A method to incorporate controls on GPP through satellite data is the light use efficiency (LUE) model, here expressed as GPP = epsilon(peak) x PAR(in) x FAPAR(green_peak); where epsilon(peak) was peak growing season light use efficiency of the vegetation, PARin was incoming photosynthetically active radiation, and FAPAR(green_peak) was peak growing season fraction of PAR absorbed by the green vegetation. The Speak was measured for seven different high-Arctic plant communities in the field, and it was on average 1.63 g CO2 MJ(-1). We found a significant linear relationship between FAPARgreen_peak measured in the field and satellite-based NDVI. The linear regression was applied to peak growing season NDVI 1992-2008 and derived FAPAR(green_peak) was entered into the LUE-model. It was shown that when several empirical models are combined, propagation errors are introduced, which results in considerable model uncertainties. The LUE-model was evaluated against field-measured GPP and the model captured field-measured GPP well (RMSE was 192 mg CO2 m(-2) h(-1)). The model showed an increase in peak growing season GPP of 42 mg CO2 m(-2) h(-1) y(-1) in Rylekaerene 1992-2008. There was also a strong increase in air temperature (0.15 degrees C y(-1)), indicating that the GPP trend may have been climate driven. (C) 2012 Elsevier B.V. All rights reserved.
  •  
4.
  • Tagesson, Torbern, et al. (författare)
  • Land-atmosphere exchange of methane from soil thawing to soil freezing in a high-Arctic wet tundra ecosystem
  • 2012
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 18:6, s. 1928-1940
  • Tidskriftsartikel (refereegranskat)abstract
    • The land-atmosphere exchange of methane (CH4) and carbon dioxide (CO2) in a high-Arctic wet tundra ecosystem (Rylek ae rene) in Zackenberg, north-eastern Greenland, was studied over the full growing season and until early winter in 2008 and from before snow melt until early winter in 2009. The eddy covariance technique was used to estimate CO2 fluxes and a combination of the gradient and eddy covariance methods was used to estimate CH4 fluxes. Small CH4 bursts were observed during spring thawing 2009, but these existed during short periods and would not have any significant effect on the annual budget. Growing season CH4 fluxes were well correlated with soil temperature, gross primary production, and active layer thickness. The CH4 fluxes remained low during the entire autumn, and until early winter. No increase in CH4 fluxes were seen as the soil started to freeze. However, in autumn 2008 there were two CH4 burst events that were highly correlated with atmospheric turbulence. They were likely associated with the release of stored CH4 from soil and vegetation cavities. Over the measurement period, 7.6 and 6.5g C m(-2) was emitted as CH4 in 2008 and in 2009, respectively. Rylek ae rene acted as a C source during the warmer and wetter measurement period 2008, whereas it was a C sink for the colder and drier period of 2009. Wet tundra ecosystems, such as Rylek ae rene may thus play a more significant role for the climate in the future, as temperature and precipitation are predicted to increase in the high-Arctic.
  •  
5.
  • Tagesson, Torbern, et al. (författare)
  • Modelling of growing season methane fluxes in a high-Arctic wet tundra ecosystem 1997-2010 using in situ and high-resolution satellite data
  • 2013
  • Ingår i: Tellus. Series B: Chemical and Physical Meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 65
  • Tidskriftsartikel (refereegranskat)abstract
    • Methane (CH4) fluxes 1997-2010 were studied by combining remotely sensed normalised difference water index (NDWI) with in situ CH4 fluxes from Rylekaerene, a high-Arctic wet tundra ecosystem in the Zackenberg valley, north-eastern Greenland. In situ CH4 fluxes were measured using the closed-chamber technique. Regression models between in situ CH4 fluxes and environmental variables [soil temperature (T-soil), water table depth (WtD) and active layer (AL) thickness] were established for different temporal and spatial scales. The relationship between in situ WtD and remotely sensed NDWI was also studied. The regression models were combined and evaluated against in situ CH4 fluxes. The models including NDWI as the input data performed on average slightly better [root mean square error (RMSE) = 1.56] than the models without NDWI (RMSE = 1.67), and they were better in reproducing CH4 flux variability. The CH4 flux model that performed the best included exponential relationships against temporal variation in T-soil and AL, an exponential relationship against spatial variation in WtD and a linear relationship between WtD and remotely sensed NDWI (RMSE = 1.50). There were no trends in modelled CH4 flux budgets between 1997 and 2010. Hence, during this period there were no trends in the soil temperature at 10 cm depth and NDWI.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy