SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sigurdsson Gunnar) ;lar1:(ki)"

Sökning: WFRF:(Sigurdsson Gunnar) > Karolinska Institutet

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sandling, Johanna K., et al. (författare)
  • A candidate gene study of the type I interferon pathway implicates IKBKE and IL8 as risk loci for SLE
  • 2011
  • Ingår i: European Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1018-4813 .- 1476-5438. ; 19:4, s. 479-484
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease in which the type I interferon pathway has a crucial role. We have previously shown that three genes in this pathway, IRF5, TYK2 and STAT4, are strongly associated with risk for SLE. Here, we investigated 78 genes involved in the type I interferon pathway to identify additional SLE susceptibility loci. First, we genotyped 896 single-nucleotide polymorphisms in these 78 genes and 14 other candidate genes in 482 Swedish SLE patients and 536 controls. Genes with P<0.01 in the initial screen were then followed up in 344 additional Swedish patients and 1299 controls. SNPs in the IKBKE, TANK, STAT1, IL8 and TRAF6 genes gave nominal signals of association with SLE in this extended Swedish cohort. To replicate these findings we extracted data from a genomewide association study on SLE performed in a US cohort. Combined analysis of the Swedish and US data, comprising a total of 2136 cases and 9694 controls, implicates IKBKE and IL8 as SLE susceptibility loci (P(meta)=0.00010 and P(meta)=0.00040, respectively). STAT1 was also associated with SLE in this cohort (P(meta)=3.3 × 10(-5)), but this association signal appears to be dependent of that previously reported for the neighbouring STAT4 gene. Our study suggests additional genes from the type I interferon system in SLE, and highlights genes in this pathway for further functional analysis.
  •  
2.
  • Sigurdsson, Snaevar, et al. (författare)
  • A risk haplotype of STAT4 for systemic lupus erythematosus is over-expressed, correlates with anti-dsDNA and shows additive effects with two risk alleles of IRF5
  • 2008
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 17:18, s. 2868-2876
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic lupus erythematosus (SLE) is the prototype autoimmune disease where genes regulated by type I interferon (IFN) are over-expressed and contribute to the disease pathogenesis. Because signal transducer and activator of transcription 4 (STAT4) plays a key role in the type I IFN receptor signaling, we performed a candidate gene study of a comprehensive set of single nucleotide polymorphism (SNPs) in STAT4 in Swedish patients with SLE. We found that 10 out of 53 analyzed SNPs in STAT4 were associated with SLE, with the strongest signal of association (P = 7.1 x 10(-8)) for two perfectly linked SNPs rs10181656 and rs7582694. The risk alleles of these 10 SNPs form a common risk haplotype for SLE (P = 1.7 x 10(-5)). According to conditional logistic regression analysis the SNP rs10181656 or rs7582694 accounts for all of the observed association signal. By quantitative analysis of the allelic expression of STAT4 we found that the risk allele of STAT4 was over-expressed in primary human cells of mesenchymal origin, but not in B-cells, and that the risk allele of STAT4 was over-expressed (P = 8.4 x 10(-5)) in cells carrying the risk haplotype for SLE compared with cells with a non-risk haplotype. The risk allele of the SNP rs7582694 in STAT4 correlated to production of anti-dsDNA (double-stranded DNA) antibodies and displayed a multiplicatively increased, 1.82-fold risk of SLE with two independent risk alleles of the IRF5 (interferon regulatory factor 5) gene.
  •  
3.
  • Sigurdsson, Snaevar, et al. (författare)
  • Comprehensive evaluation of the genetic variants of interferon regulatory factor 5 (IRF5) reveals a novel 5 bp length polymorphism as strong risk factor for systemic lupus erythematosus
  • 2008
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 17:6, s. 872-881
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyzed a comprehensive set of single-nucleotide polymorphisms (SNPs) and length polymorphisms in the interferon regulatory factor 5 (IRF5) gene for their association with the autoimmune disease systemic lupus erythematosus (SLE) in 485 Swedish patients and 563 controls. We found 16 SNPs and two length polymorphisms that display association with SLE (P < 0.0005, OR > 1.4). Using a Bayesian model selection and averaging approach we identified parsimonious models with exactly two variants of IRF5 that are independently associated with SLE. The variants of IRF5 with the highest posterior probabilities (1.00 and 0.71, respectively) of being causal in SLE are a SNP (rs10488631) located 3' of IRF5, and a novel CGGGG insertion-deletion (indel) polymorphism located 64 bp upstream of the first untranslated exon (exon 1A) of IRF5. The CGGGG indel explains the association signal from multiple SNPs in the IRF5 gene, including rs2004640, rs10954213 and rs729302 previously considered to be causal variants in SLE. The CGGGG indel contains three or four repeats of the sequence CGGGG with the longer allele containing an additional SP1 binding site as the risk allele for SLE. Using electrophoretic mobility shift assays we show increased binding of protein to the risk allele of the CGGGG indel and using a minigene reporter assay we show increased expression of IRF5 mRNA from a promoter containing this allele. Increased expression of IRF5 protein was observed in peripheral blood mononuclear cells from SLE patients carrying the risk allele of the CGGGG indel. We have found that the same IRF5 allele also confers risk for inflammatory bowel diseases and multiple sclerosis, suggesting a general role for IRF5 in autoimmune diseases.
  •  
4.
  • Gaulton, Kyle J, et al. (författare)
  • Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.
  • 2015
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:12, s. 1415-1415
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
  •  
5.
  • Helgadottir, Anna, et al. (författare)
  • The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm
  • 2008
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 40:2, s. 217-224
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, two common sequence variants on 9p21, tagged by rs10757278-G and rs10811661-T, were reported to be associated with coronary artery disease (CAD)(1-4) and type 2 diabetes (T2D)(5-7), respectively. We proceeded to further investigate the contributions of these variants to arterial diseases and T2D. Here we report that rs10757278-G is associated with, in addition to CAD, abdominal aortic aneurysm (AAA; odds ratio (OR) 1.31, P = 1.2 x 10(-12)) and intracranial aneurysm (OR = 1.29, P = 2.5 x 10(-6)), but not with T2D. This variant is the first to be described that affects the risk of AAA and intracranial aneurysm in many populations. The association of rs10811661-T to T2D replicates in our samples, but the variant does not associate with any of the five arterial diseases examined. These findings extend our insight into the role of the sequence variant tagged by rs10757278-G and show that it is not confined to atherosclerotic diseases.
  •  
6.
  • Kiemeney, Lambertus A, et al. (författare)
  • A sequence variant at 4p16.3 confers susceptibility to urinary bladder cancer.
  • 2010
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 42:5, s. 415-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Previously, we reported germline DNA variants associated with risk of urinary bladder cancer (UBC) in Dutch and Icelandic subjects. Here we expanded the Icelandic sample set and tested the top 20 markers from the combined analysis in several European case-control sample sets, with a total of 4,739 cases and 45,549 controls. The T allele of rs798766 on 4p16.3 was found to associate with UBC (odds ratio = 1.24, P = 9.9 x 10(-12)). rs798766 is located in an intron of TACC3, 70 kb from FGFR3, which often harbors activating somatic mutations in low-grade, noninvasive UBC. Notably, rs798766[T] shows stronger association with low-grade and low-stage UBC than with more aggressive forms of the disease and is associated with higher risk of recurrence in low-grade stage Ta tumors. The frequency of rs798766[T] is higher in Ta tumors that carry an activating mutation in FGFR3 than in Ta tumors with wild-type FGFR3. Our results show a link between germline variants, somatic mutations of FGFR3 and risk of UBC.
  •  
7.
  • Kilpeläinen, Tuomas O, et al. (författare)
  • Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile.
  • 2011
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 43:8, s. 753-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have identified 32 loci influencing body mass index, but this measure does not distinguish lean from fat mass. To identify adiposity loci, we meta-analyzed associations between ∼2.5 million SNPs and body fat percentage from 36,626 individuals and followed up the 14 most significant (P < 10(-6)) independent loci in 39,576 individuals. We confirmed a previously established adiposity locus in FTO (P = 3 × 10(-26)) and identified two new loci associated with body fat percentage, one near IRS1 (P = 4 × 10(-11)) and one near SPRY2 (P = 3 × 10(-8)). Both loci contain genes with potential links to adipocyte physiology. Notably, the body-fat-decreasing allele near IRS1 is associated with decreased IRS1 expression and with an impaired metabolic profile, including an increased visceral to subcutaneous fat ratio, insulin resistance, dyslipidemia, risk of diabetes and coronary artery disease and decreased adiponectin levels. Our findings provide new insights into adiposity and insulin resistance.
  •  
8.
  • Scott, Robert A., et al. (författare)
  • An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 66:11, s. 2888-2902
  • Tidskriftsartikel (refereegranskat)abstract
    • To characterize type 2 diabetes (T2D)-associated variation across the allele frequency spectrum, we conducted a meta-analysis of genome-wide association data from 26,676 T2D case and 132,532 control subjects of European ancestry after imputation using the 1000 Genomes multiethnic reference panel. Promising association signals were followed up in additional data sets (of 14,545 or 7,397 T2D case and 38,994 or 71,604 control subjects). We identified 13 novel T2D-associated loci (P < 5 x 10(-8)), including variants near the GLP2R, GIP, and HLA-DQA1 genes. Our analysis brought the total number of independent T2D associations to 128 distinct signals at 113 loci. Despite substantially increased sample size and more complete coverage of low-frequency variation, all novel associations were driven by common single nucleotide variants. Credible sets of potentially causal variants were generally larger than those based on imputation with earlier reference panels, consistent with resolution of causal signals to common risk haplotypes. Stratification of T2D-associated loci based on T2D-related quantitative trait associations revealed tissue-specific enrichment of regulatory annotations in pancreatic islet enhancers for loci influencing insulin secretion and in adipocytes, monocytes, and hepatocytes for insulin action-associated loci. These findings highlight the predominant role played by common variants of modest effect and the diversity of biological mechanisms influencing T2D pathophysiology.
  •  
9.
  • Sigurdsson, Snaevar, et al. (författare)
  • Association of a Haplotype in the Promoter Region of the Interferon Regulatory Factor 5 Gene With Rheumatoid Arthritis
  • 2007
  • Ingår i: Arthritis and Rheumatism. - : Wiley. - 0004-3591 .- 1529-0131. ; 56:7, s. 2202-2210
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. To determine whether genetic variants of the interferon regulatory factor 5 (IRF-5) and Tyk-2 genes are associated with rheumatoid arthritis (RA). Methods. Five single-nucleotide polymorphisms (SNPs) in IRF5 and 3 SNPs in Tyk2 were analyzed in a Swedish cohort of 1,530 patients with RA and 881 controls. A replication study was performed in a Dutch cohort of 387 patients with RA and 181 controls. All patient sera were tested for the presence of autoantibodies against cyclic citrullinated peptides (anti-CCP). Results. Four of the 5 SNPs located in the 5' region of IRF5 were associated with RA, while no association was observed with the Tyk2 SNPs. The minor alleles of 3 of the IRF5 SNPs, which were in linkage disequilibrium and formed a relatively common haplotype with a frequency of ∼0.33, appeared to confer protection against RA. Although these disease associations were seen in the entire patient group, they were mainly found in RA patients who were negative for anti-CCP. A suggestive association of IRF5 SNPs with anti-CCP-negative RA was also observed in the Dutch cohort. Conclusion. Given the fact that anti-CCP-negative RA differs from anti-CCP-positive RA with respect to genetic and environmental risk factor profiles, our results indicate that genetic variants of IRF5 contribute to a unique disease etiology and pathogenesis in anti-CCP-negative RA.
  •  
10.
  • Sigurdsson, S, et al. (författare)
  • Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus
  • 2005
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 76:3, s. 528-37
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease caused by both genetic and environmental factors. Genome scans in families with SLE point to multiple potential chromosomal regions that harbor SLE susceptibility genes, and association studies in different populations have suggested several susceptibility alleles for SLE. Increased production of type I interferon (IFN) and expression of IFN-inducible genes is commonly observed in SLE and may be pivotal in the molecular pathogenesis of the disease. We analyzed 44 single-nucleotide polymorphisms ( SNPs) in 13 genes from the type I IFN pathway in 679 Swedish, Finnish, and Icelandic patients with SLE, in 798 unaffected family members, and in 438 unrelated control individuals for joint linkage and association with SLE. In two of the genes - the tyrosine kinase 2 (TYK2) and IFN regulatory factor 5 (IRF5) genes - we identified SNPs that displayed strong signals in joint analysis of linkage and association (unadjusted P < 10(-7)) with SLE. TYK2 binds to the type I IFN receptor complex and IRF5 is a regulator of type I IFN gene expression. Thus, our results support a disease mechanism in SLE that involves key components of the type I IFN system.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11
Typ av publikation
tidskriftsartikel (11)
Typ av innehåll
refereegranskat (11)
Författare/redaktör
Syvänen, Ann-Christi ... (7)
Jönsen, Andreas (5)
Sturfelt, Gunnar (5)
Nordmark, Gunnel (5)
Rönnblom, Lars (5)
Sigurdsson, Snaevar (5)
visa fler...
Thorleifsson, Gudmar (5)
Thorsteinsdottir, Un ... (5)
Stefansson, Kari (5)
Gunnarsson, Iva (4)
Svenungsson, Elisabe ... (4)
Eloranta, Maija-Leen ... (4)
Groop, Leif (3)
Truedsson, Lennart (3)
Salomaa, Veikko (3)
Wareham, Nicholas J. (3)
Pedersen, Oluf (3)
Hansen, Torben (3)
Langenberg, Claudia (3)
Hamsten, Anders (3)
Ripatti, Samuli (3)
Gieger, Christian (3)
Boeing, Heiner (2)
Bengtsson, Anders (2)
Lyssenko, Valeriya (2)
Tuomi, Tiinamaija (2)
Lind, Lars (2)
Palli, Domenico (2)
Kraft, Peter (2)
Almgren, Peter (2)
Stancáková, Alena (2)
Kuusisto, Johanna (2)
Isomaa, Bo (2)
Laakso, Markku (2)
McCarthy, Mark I (2)
Linneberg, Allan (2)
Grarup, Niels (2)
Sennblad, Bengt (2)
Hu, Frank B. (2)
van Duijn, Cornelia ... (2)
Boehnke, Michael (2)
Mohlke, Karen L (2)
Scott, Robert A (2)
Ingelsson, Erik (2)
Qi, Lu (2)
Jorgensen, Torben (2)
Hunter, David J (2)
Charpentier, Guillau ... (2)
Tuomilehto, Jaakko (2)
Abecasis, Goncalo R. (2)
visa färre...
Lärosäte
Uppsala universitet (9)
Lunds universitet (9)
Umeå universitet (6)
Göteborgs universitet (2)
Stockholms universitet (2)
visa fler...
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (11)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (10)
Naturvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy