1. |
- Huerta, E. A., et al.
(författare)
-
Enabling real-time multi-messenger astrophysics discoveries with deep learning
- 2019
-
Ingår i: Nature reviews physics. - : Springer Science and Business Media LLC. - 2522-5820. ; 1:10, s. 600-608
-
Forskningsöversikt (refereegranskat)abstract
- Multi-messenger astrophysics is a fast-growing, interdisciplinary field that combines data, which vary in volume and speed of data processing, from many different instruments that probe the Universe using different cosmic messengers: electromagnetic waves, cosmic rays, gravitational waves and neutrinos. In this Expert Recommendation, we review the key challenges of real-time observations of gravitational wave sources and their electromagnetic and astroparticle counterparts, and make a number of recommendations to maximize their potential for scientific discovery. These recommendations refer to the design of scalable and computationally efficient machine learning algorithms; the cyber-infrastructure to numerically simulate astrophysical sources, and to process and interpret multi-messenger astrophysics data; the management of gravitational wave detections to trigger real-time alerts for electromagnetic and astroparticle follow-ups; a vision to harness future developments of machine learning and cyber-infrastructure resources to cope with the big-data requirements; and the need to build a community of experts to realize the goals of multi-messenger astrophysics. A group of experts suggests ways in which deep learning can be used to enhance the potential for discovery in multi-messenger astrophysics.
|
|
2. |
- Ginsburg, Adam, et al.
(författare)
-
astroquery: An Astronomical Web-querying Package in Python
- 2019
-
Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 157:3
-
Tidskriftsartikel (refereegranskat)abstract
- Astroquery is a collection of tools for requesting data from databases hosted on remote servers with interfaces exposed on the Internet, including those with web pages but without formal application program interfaces. These tools are built on the Python requests package, which is used to make HTTP requests, and astropy, which provides most of the data parsing functionality. astroquery modules generally attempt to replicate the web page interface provided by a given service as closely as possible, making the transition from browser-based to command-line interaction easy. astroquery has received significant contributions from throughout the astronomical community, including several from telescope archives. astroquery enables the creation of fully reproducible workflows from data acquisition through publication. This paper describes the philosophy, basic structure, and development model of the astroquery package. The complete documentation for astroquery can be found at http://astroquery.readthedocs.io/.
|
|
3. |
- Soumagnac, Maayane T., et al.
(författare)
-
Early Ultraviolet Observations of Type IIn Supernovae Constrain the Asphericity of Their Circumstellar Material
- 2020
-
Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 899:1
-
Tidskriftsartikel (refereegranskat)abstract
- We present a survey of the early evolution of 12 Type IIn supernovae (SNe IIn) at ultraviolet and visible light wavelengths. We use this survey to constrain the geometry of the circumstellar material (CSM) surrounding SN IIn explosions, which may shed light on their progenitor diversity. In order to distinguish between aspherical and spherical CSM, we estimate the blackbody radius temporal evolution of the SNe IIn of our sample, following the method introduced by Soumagnac et al. We find that higher-luminosity objects tend to show evidence for aspherical CSM. Depending on whether this correlation is due to physical reasons or to some selection bias, we derive a lower limit between 35% and 66% for the fraction of SNe IIn showing evidence for aspherical CSM. This result suggests that asphericity of the CSM surrounding SNe IIn is common-consistent with data from resolved images of stars undergoing considerable mass loss. It should be taken into account for more realistic modeling of these events.
|
|